Как делать комплексные числа

woman 1853936 1920 Советы на день
Содержание
  1. Комплексные числа — простое объяснение. Сложение, вычитание, умножение и деление комплексных чисел
  2. Комплексные числа — простое объяснение
  3. Операции с комплексными числами
  4. Сложение и вычитание комплексных чисел
  5. Умножение и деление комплексных чисел
  6. Комплексные числа — тригонометрическая форма
  7. Комплексные числа
  8. Алгебраическая форма записи комплексных чисел
  9. Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
  10. Комплексно сопряженные числа
  11. Модуль комплексного числа
  12. Деление комплексных чисел, записанных в алгебраической форме
  13. Изображение комплексных чисел радиус-векторами координатной плоскости
  14. Аргумент комплексного числа
  15. Формула Эйлера. Экспоненциальная форма записи комплексного числа
  16. Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
  17. Извлечение корня натуральной степени из комплексного числа

Комплексные числа — простое объяснение. Сложение, вычитание, умножение и деление комплексных чисел

kompleksnye chisla onlajn kalkulyator i prostoe obyasnenie

Комплексные числа не так сложны, как могло бы показаться. В начале они назывались невозможными числами. Также их еще называли мнимыми или воображаемыми, поскольку действительно чтобы их представить, требуется немного воображения. В данном обзоре постараемся в доступной форме с наглядными примерами разобраться с данными числами.

Комплексные числа — простое объяснение

Для того, чтобы разобраться с комплексными числами, следует для начала рассмотреть множество действительных чисел. К этому множеству относятся целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.

Рассмотрим две точки на прямой А = 1 и Б = 2. Сложим эти две точки. Их сумма эта третья точка В = 1+2 = 3.

kompleksnye chisla prostoe obyasnenie

Точки также можно перемножать. Посмотрим, например, как действует умножения на минус 2. Данное действие преобразует точку 1 в минус 2. Если мы снова умножим на минус 2, то нужно будет повторить аналогичное передвижение на прямой, поменять стороны относительно начала координат и удвоить расстояние до него. В результате получим 4.

kompleksnye chisla prostoe obyasnenie2

Умножение на минус 1 устроено просто. Каждая точка переходит в симметричную ей относительно начала координат. Другими словами нужно сделать пол оборота (повернуть на 180°). Повторение умножения на минус 1 приводит в исходное положение. Умножение на минус 1 переводит 1 в минус 1. Если еще раз умножить на минус 1, мы вернемся обратно в 1.

На данном этапе можно выделить правило, что если умножить число на себя, результат всегда будет положительным. Другими словами минус 1 не имеет квадратного корня. Но только не в случае с комплексными числами.

В начале 19 века Робер Арган высказал следующую идею. Поскольку умножить на минус 1 означает повернуть на 180°, то квадратный корень из минус 1 означает повернуть на половину (90°). Если повернуть дважды на четверть оборота, вы сделаете пол оборота. Квадрат четверти оборота — это пол оборота (минус 1). То есть квадратный корень из минус 1 отвечает точке, в которую минус 1 переходит при повороте на 90°. Поскольку такое построение, выходящее за пределы горизонтальной прямой, выглядит странным, говорят, что такая точка, являющаяся квадратным корнем из минус 1 — это мнимое число. И в математике оно обозначается — i.

kompleksnye chisla prostoe obyasnenie3

С выходом за пределы прямой, все последующие действия производятся легко. Можно отметить числа 2i, 3i и так далее. Каждой точке плоскости отвечает комплексное число. И наоборот — всякое комплексное число задает точку на плоскости.

Операции с комплексными числами

Так же как и для вещественных чисел, для комплексных чисел определены операции сложения, вычитания, умножения и деления. Однако многие свойства комплексных чисел отличаются от свойств вещественных чисел. Например, нельзя указать, какое из двух комплексных чисел больше или меньше.

Сложение и вычитание комплексных чисел

Комплексные числа могут складываться и вычитаться как обычные.

Рассмотрим точку, обозначающую число 1+2i. Прибавим к нему число 3+1i. Можно сложить столбиком и получить 4+3i. Геометрически это обычное сложение векторов.

slozhenie i vychitanie kompleksnyh chisel

Разность комплексных чисел, записанных в алгебраической форме, представляет собой комплексное число, действительная часть которого и коэффициент при мнимой части равны соответственно разности действительных частей и разности коэффициентов при мнимой части уменьшаемого и вычитаемого.

В общем виде вычитание комплексных чисел z1 = a+bi и z2 = c+di можно записать так: z1-z2 = (a+bi)-(c+di) = (a-c)+(b-d)i.

Несколько примеров вычитания:

Умножение и деление комплексных чисел

Комплексные числа перемежаются точно также, как и действительные числа. Рассмотрим несколько примеров.

2×(1+1i) = 2+2i. Геометрически умножение на два выглядит как растягивание прямой с точкой на плоскости в два раза.

Частное комплексных чисел z1 = x1+y1i и z2 = x2+y2i в алгебраической форме находится путем домножения числителя и знаменателя на сопряженное число к знаменателю:

z1÷z2 = (x1+y1i)÷(x2+y2i) = ((x1+y1i)×(x2-y2i))÷((x2+y2i)×(x2-y2i)) = ((x1×x2+y1×y2)÷(x2²+y2²)) + (i×(x2×y1-x1×y2)÷(x2²+y2²)).

Комплексные числа — тригонометрическая форма

Казалось бы, плоскость двухмерная, так как для описания произвольной точки нужны два числа. На самом же деле можно обойтись одним числом. Для этого используется тригонометрическая форма представления. То есть z = a+bi можно представить как z = [z]×(cosφ+i×sinφ), где:

kompleksnye chisla trigonometricheskaya forma

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: [z] = √(a²+b²). Данная формула справедлива для любых значений a и b.

Для нахождения аргумента (φ или argz) нужно воспользоваться следующими формулами:

Как видно, комплексные числа не так сложны, как могло бы показаться на первый взгляд. Ознакомившись с простым объяснением и методикой работы с ними, вы научитесь складывать, вычитать, умножать и делить комплексные числа. Также вы сможете переводить комплексные числа из алгебраической формы в тригонометрическую.

Источник

Комплексные числа

dot5Алгебраическая форма записи комплексных чисел
dot5Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
dot5Комплексно сопряженные числа
dot5Модуль комплексного числа
dot5Деление комплексных чисел, записанных в алгебраической форме
dot5Изображение комплексных чисел радиус-векторами на координатной плоскости
dot5Аргумент комплексного числа
dot5Тригонометрическая форма записи комплексного числа
dot5Формула Эйлера. Экспоненциальная форма записи комплексного числа
dot5Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
dot5Извлечение корня натуральной степени из комплексного числа

div1

Алгебраическая форма записи комплексных чисел

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Комплексно сопряженные числа

dot5 comp14
dot5 comp15
dot5 comp16
dot5 comp17
dot5 comp18

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

comp19

Для произвольного комплексного числа z справедливо равенство:

comp20

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

dot5 comp21
dot5 comp22
dot5 comp23
dot5 comp24

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

comp25

comp25w600

comp25w300

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

comp26

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

c1

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

c2

Считается, что комплексное число нуль аргумента не имеет.

comp28

Тогда оказывается справедливым равенство:

comp29

comp31 (3)
comp32 (4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная
вещественная
полуось
comp36 comp37 comp38
Положительная
мнимая
полуось
ms4 comp41 comp42
Второй
квадрант
comp44 comp45 comp46
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргумент φ = 2kπ
Примеры comp34
Главное
значение
аргумента comp36 Аргумент comp37 Примеры comp38 Главное
значение
аргумента ms4 Аргумент comp41 Примеры comp42 Главное
значение
аргумента comp44 Аргумент comp45 Примеры comp46

x z Третий
квадрант Знаки x и y

x z Отрицательная
мнимая
полуось Знаки x и y

y z Четвёртый
квадрант Знаки x и y

Положительная вещественная полуось

Главное значение аргумента:

comp34

Расположение числа z :

Главное значение аргумента:

comp36

comp37

comp38

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

ms4

comp41

comp42

Расположение числа z :

Главное значение аргумента:

comp44

comp45

comp46

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

Из формулы (7) вытекают, в частности, следующие равенства:

comp65

comp65w400

а из формул (4) и (6) следует, что модуль комплексного числа

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел comp68и comp69записанных в экспоненциальной форме, осуществляется по формулам

comp70

comp70w300

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

comp71

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

Пусть comp72— произвольное комплексное число, отличное от нуля.

Для того, чтобы решить уравнение (8), перепишем его в виде

comp75

comp76

следствием которых являются равенства

comp77 (9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

comp78 (10)

comp79

comp79w300

comp84

то по формуле (10) получаем:

comp85

comp86

comp86w300

Источник

Оцените статью
Добавить комментарий

Adblock
detector