- Сокращение алгебраических дробей: правило, примеры.
- Смысл сокращения алгебраической дроби
- Все ли алгебраические дроби подлежат сокращению?
- Правило сокращения алгебраических дробей
- Характерные примеры
- Как сокращать алгебраические дроби?
- Определение
- Сокращение алгебраических дробей
- Сокращение алгебраических дробей с многочленами
- Вынесение общего множителя при сокращении дробей
- Сокращение дробей. Формулы сокращенного умножения
- Свойства степеней. Действия со степенями
- Что такое степень числа
- Таблица степеней
- Как можно сокращать степени?
- Как сокращать дроби в степени?
- Можно ли в дроби сокращать степени?
- Что делать со степенями при сложении чисел?
- Как сократить дробь с цифрами и буквами?
- Как сократить дробь в примере?
- Как сократить дробь до Несократимой?
- Как сокращать дроби в квадрате?
- В каком случае нельзя сократить дробь?
- Как умножать числа с одинаковыми степенями?
- Что происходит со степенями при умножении и делении?
- Как решать степени с разными основаниями?
- Как разделить степени с одинаковыми основаниями?
- Как сократить дробь с разными знаками?
- Как сократить дробь на дробь?
- Как можно упрощать дроби?
- Алгебраические дроби. Сокращение алгебраических дробей
- Сокращение алгебраической дроби
- Нельзя сокращать
- Можно сокращать
- Как сократить дробь с многочленами
- Неправильно
- Правильно
- Вынесение общего множителя при сокращении дробей
- Сокращение дробей с помощью формул сокращенного умножения
Сокращение алгебраических дробей: правило, примеры.
Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.
Смысл сокращения алгебраической дроби
В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.
Сокращение алгебраической дроби представляет собой аналогичное действие.
Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.
Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.
Все ли алгебраические дроби подлежат сокращению?
С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.
Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.
Правило сокращения алгебраических дробей
Правило сокращения алгебраических дробей состоит из двух последовательных действий:
Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.
Характерные примеры
Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:
Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).
К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105
Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:
(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:
24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105
По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.
Решение
Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:
Однако, более рациональным способом будет запись решения в виде выражения со степенями:
Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).
Решение
Возможно сократить дробь таким образом:
Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.
Решение
Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:
Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:
Краткое решение без пояснений запишем как цепочку равенств:
Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.
Решение
На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:
Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:
Теперь становится виден общий множитель, осуществляем сокращение:
Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.
Как сокращать алгебраические дроби?
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение
Алгебраическая дробь — это дробь, в числителе и/или знаменателе которой стоят алгебраические выражения (буквенные множители). Вот так:
Алгебраическая дробь содержит буквенные множители и степени.
Необыкновенной алгебраическую дробь делают буквы. Если заменить их на цифры, то карета превратится в тыкву — алгебраическая дробь тут же станет обыкновенной.
Если вы засомневались, что должно быть сверху — числитель или знаменатель — переходите по ссылке и освежите знания по теме обыкновенных дробей.
Сокращение алгебраических дробей
Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.
Если в 7 классе только и разговоров, что об обыкновенных дробях, то 8 класс сокращает исключительно алгебраические дроби.
Сокращение дробей с буквами и степенями проходит в три этапа:
Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:
Пример сокращения дроби со степенями и буквами:
Получаем сокращенную дробь.
Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.
❌ Так нельзя | ✅ Так можно |
Примеры сокращения алгебраических дробей с одночленами:
Пример сокращения №1.
Получаем сокращенную алгебраическую дробь.
Пример сокращения №2.
Получаем сокращенную дробь.
Сокращение алгебраических дробей с многочленами
Чтобы верно сократить алгебраическую дробь с многочленами, придерживайтесь двух главных правил:
Запомните: многочлены в алгебраической дроби находятся в скобках. Между этими скобками вклиниться может только знак умножения. Всем остальным знакам там делать нечего.
Примеры сокращения алгебраических дробей с многочленами:
Последовательно сокращаем: сначала x, затем (x+c), далее сокращаем дробь на 6 (общий множитель).
Сокращаем многочлены a+b (в дроби их 3). Многочлен в числителе стоит в квадрате, поэтому мысленно оставляем его при сокращении.
Вынесение общего множителя при сокращении дробей
При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.
Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:
Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.
Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен. |
Пример 1.
Пример 2.
Как решаем: выносим общий множитель a за скобки и сокращаем оставшиеся в скобках многочлены.
Сокращение дробей. Формулы сокращенного умножения
Перед формулами сокращенного умножения не устоит ни одна дробь — даже алгебраическая.
Чтобы легко ориентироваться в формулах сокращенного умножения, сохраняйте и заучивайте таблицу. Формулы подскажут вам, как решать алгебраические дроби.
Примеры сокращения дробей с помощью формул сокращенного умножения:
Чтобы раскрыть тему сокращения алгебраических дробей и полностью погрузиться в мир числителей и знаменателей, решите следующие примеры для самопроверки.
Примеры сокращения дробей за 7 и 8 классы
Тема сокращения алгебраических дробей достаточно обширна, и требует к себе особого внимания. Чтобы знания задержалась в голове хотя бы до ЕГЭ, сохраните себе памятку по сокращению дробей. Этот алгоритм поможет не растеряться при встрече с алгебраическими дробями лицом к лицу.
Свойства степеней. Действия со степенями
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Что такое степень числа
В учебниках по математике можно встретить такое определение:
«Степенью n числа а является произведение множителей величиной а n раз подряд»
a — основание степени;
n — показатель степени.
Читается такое выражение, как a в степени n
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.
А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:
2 — основание степени;
3 — показатель степени.
Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.
Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.
Задачка про миллион: представьте, что у вас есть миллион рублей. В начале каждого года вы зарабатываете на нем еще два. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.
Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:
Математики заскучали и решили все упростить:
Ответ: через четыре года у вас будет 81 миллион.
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).
Как можно сокращать степени?
Как сокращать дроби в степени?
Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а при делении степеней показатели вычитаем. a² и a⁷ сокращаем на a².
Можно ли в дроби сокращать степени?
Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь. Сокращать можно только множители! Члены многочленов сокращать нельзя!
Что делать со степенями при сложении чисел?
Как складывать числа с одинаковыми степенями
Сначала возводим каждое число в степень и затем выполняем сложение. В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a2, например) — их коэффициенты можно складывать.
Как сократить дробь с цифрами и буквами?
Сокращение дробей состоит в том, что числитель и знаменатель дроби делят на одно и то же число. Если алгебраическая дробь одночленная, то числитель и знаменатель представляется в виде произведения нескольких множителей, и сразу видно, на какие одинаковые числа можно их разделить.
Как сократить дробь в примере?
Для примера, проведем сокращение обыкновенной дроби 8/24, разделив ее числитель и знаменатель на 2. Иными словами, сократим дробь 8/24 на 2. Так как 8:2=4 и 24:2=12, то в результате такого сокращения получается дробь 4/12, которая равна исходной дроби 8/24 (смотрите равные и неравные дроби).
Как сократить дробь до Несократимой?
Сокращая дробь, стремитесь в итоге получить несократимую дробь. Разделите числитель и знаменатель дроби на их НОД (наибольший общий делитель). Так вы приведете дробь к несократимому виду.
Как сокращать дроби в квадрате?
Чтобы сократить дробь, найдите общий множитель числителя и знаменателя. Поделите числитель и знаменатель на общий множитель. Чтобы разделить многочлен на множители, вынесите общий множитель за скобку. Второй способ разделить многочлен на множители — применить формулы сокращенного умножения.
В каком случае нельзя сократить дробь?
Если числитель и знаменатель представлены числовыми или буквенными выражениями, то на слагаемое сокращать нельзя. Сумму (разность), если возможно, надо преобразовать в произведение и сократить на общий множитель числителя и знаменателя дроби. Числитель и знаменатель преобразовали в произведение.
Как умножать числа с одинаковыми степенями?
Что происходит со степенями при умножении и делении?
При умножении двух степеней с одинаковым показателем, в произведении показатель степени остаётся таким же, а основания перемножаются друг с другом. Ответ: ac · bc = (a∙b)c. При делении двух степеней с одинаковым показателем, в частном показатель степени остаётся таким же, а основания делятся друг на друга.
Как решать степени с разными основаниями?
Как разделить степени с одинаковыми основаниями?
Чтобы разделить друг на друга степени с одинаковыми показателями, достаточно разделить одно основание на другое, а показатель степени оставить неизменным.
Как сократить дробь с разными знаками?
Сокращение дробей состоит в том, что числителя и знаменателя дроби делят на одно и то же число. и т. п. Итак, если в числителе и знаменателе имеются множителями различные степени одной и той же буквы, то можно сократить эту дробь на меньшую степень этой буквы.
Как сократить дробь на дробь?
Как можно упрощать дроби?
Чтобы сократить обыкновенную дробь, нужно разделить ее числитель и знаменатель на одно и то же натуральное число. Это число является наибольшим общим делителем числителя и знаменателя данной дроби.
Алгебраические дроби. Сокращение алгебраических дробей
Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.
Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.
Примеры алгебраических дробей.
Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).
Сокращение алгебраической дроби
Алгебраическую дробь можно сокращать. При сокращении пользуются правилами сокращения обыкновенных дробей.
Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.
Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.
Рассмотрим пример сокращения алгебраической дроби.
Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.
Напоминаем, что любая буква или число в нулевой степени — это единица.
Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.
Краткая запись сокращения алгебраической дроби выглядит следующим образом.
Сокращать можно только одинаковые буквенные множители.
Нельзя сокращать
Можно сокращать
Другие примеры сокращения алгебраических дробей.
Как сократить дробь с многочленами
Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.
Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!
Ни в коем случае нельзя сокращать часть многочлена внутри скобок!
Неправильно
Правильно
Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.
После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.
Примеры сокращения алгебраических дробей с многочленами.
Вынесение общего множителя при сокращении дробей
Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.
В таком виде сократить алгебраическую дробь нельзя, так как многочлен
« (3f + k) » можно сократить только со многочленом « (3f + k) ».
Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».
Сокращение дробей с помощью формул сокращенного умножения
В других примерах для сокращения алгебраических дробей требуется
применение формул сокращенного умножения.
В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.
Но если применить формулу разности квадратов для многочлена « (a 2 − b 2 ) », то одинаковые многочлены появятся.
Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.