Как находят полезные ископаемые

woman 2564660 1920 Советы на день

Разведка полезных ископаемых: как ведут геологоразведочные работы

dP2aPLYOEF

Цели и основные направления геологоразведки

Геологоразведочные работы — это мероприятия, направленные на выявление и подготовку к освоению в промышленных масштабах месторождений полезных ископаемых. В процессе выполнения таких работ в том числе изучается размещение пластов ископаемых, условия их образования и состав. Кроме того, изучаются компоненты, сопровождающие залежи полезных ископаемых, в том числе редкие металлы, попутный газ, сера и т. д., выясняется возможность их извлечения или же утилизации.

Геологоразведка сопряжена с анализом условий природы и климата в районах работ, социально-экономических предпосылок для реализации конкретных проектов. Она предусматривает изучение возможных способов добычи ископаемых при условии рациональной эксплуатации блоков и минимизации возможного вреда окружающей среде. Результатами осуществления работ по геологоразведке является расчёт и утверждение запасов полезных ископаемых, оценка их количественных ресурсов, в том числе прогнозная.

В случае, если залежи полезных ископаемых получают положительную оценку в результате поисково-оценочных мероприятий, проводится непосредственно разведка открытого месторождения. В её ходе выясняются геологическое строение участка, размеры, условия залегания и пространственное расположение залежей. Кроме того, вычисляются качество и количество ископаемых, технологические факторы, которые будут определять условия эксплуатации блока.

ZSSFq4EXOf

Сейсмическая, электрическая и гравитационная разведка

dDvRfj1I6m

Вибрационная установка Nomad-65

С помощью источника в породе создаётся избыточное давление и распространяются колебания периодического типа. Эти волны наталкиваются на слои с разными показателями упругости, после чего меняют не только направление, но и амплитуду, а также создают новые колебания. По пути следования волн размещаются датчики-приёмники, которые фиксируют колебания и передают операторам полученные сигналы. Сейсмокомплексы представляют собой типовые системы, в состав которых входит один источник и до 300 приёмников, расположенных через 25–50 метров друг от друга. Если оператор правильно выбирает схему, это позволяет исследователям получать необходимую информацию без избыточных затрат.

qfPO1t91Pk

Сейсмическая разведка: 1 — передающая система; 2 — приёмная система; 3 — сейсмоприёмники; 4 — сейсмическая волна; 5 — отражённая сейсмическая волна; 6 — нефтеносный пласт

В зависимости от того, как расположены друг относительно друга источники и приёмники колебаний, различают такие виды сейсморазведки:

После регистрации и записи колебаний проводится их анализ с целью определения особенностей распространения и свойств волн. В частности, извлекается геологическая информация о границах сейсмики. Полученные сейсмограммы требуют серьёзной обработки, поскольку они в условиях полевых работ обычно включают помехи. Что касается полезных волн, то они зачастую сложны для интерпретации. Для анализа данных применяется современная компьютерная техника.

pg2ocrYYPC

Сигналы усиливаются, фильтруются, очищаются от нежелательных колебаний и конвертируются в цифровой формат, после чего поступают на сейсмостанцию для наблюдений. По результатам обработки геологи получают материал для дальнейшего толкования. Если на полученных геологических разрезах идентифицируются аномальные зоны распространения волн, то, как правило, это является свидетельством наличия залежей полезных ископаемых.

c08LAbSGnI

Закладка взрывного источника сейсмических колебаний

Ещё одним популярным видом геологоразведки является разведка электрическая. Данное направление включает способы исследования недр, которые применяются для изучения как верхних слоёв породы, так и для глубинной разведки. В свою очередь, они делятся на две большие группы.

Методы электрической разведки:

Исследование недр индукционными методами предусматривает создание электромагнитного поля за счёт эффекта магнитной индукции под влиянием переменного электрического поля или же магнитного поля. При обладании информацией о параметрах источника поля оператор может свободно измерить магнитные и электрические составляющие индуцированного поля и, следовательно, восстановить параметры среды их возникновения.

В свою очередь, методы сопротивлений основываются на пропускании через грунт электродов с постоянным током. Измеряется напряжение, которое вызвано данным током, поступающее от первой ко второй группе электродов. При наличии информации о напряжении и силе тока можно вычислить показатель сопротивления среды, через которую пропускается электричество. Благодаря конфигурации электродов точно устанавливается участок пространства, в которой меняется сопротивление.

6zhC9k60E3

Принципиальная схема электроразведки методами сопротивлений: 1 — питающая линия; 2 — измерительная линия; 3 — измерительные заземления; 4 — питающие заземления; 5 — область исследования; 6 — линии тока

zGOPamFg61

Электроразведочная станция для вертикального электрического зондирования

Поиск возможных залежей полезных ископаемых производится в том числе способом гравитационной разведки. Он основан на принципе измерения показателя ускорения свободного падения. Последнее зависит не только от параметров планеты в целом, но и от аномальной плотности пород в районах поисков. Таким образом, неоднородность плотности подземных горизонтов легко вычисляется в гравитационном поле.

3F30c1kgE3

Поиск залежей твёрдых ископаемых

Хотя конкретные способы разведки месторождений зависят от возможности применения определённых технических средств в конкретных условиях, для выявления залежей твёрдых полезных ископаемых (руд, минералов и т. д.) соответствующие мероприятия, как правило, проводятся в шесть типовых стадий:

1. Геофизические и геолого-съёмочные работы. Данный этап включает исследование крупных геологических структур, в которых, вероятно, присутствуют полезные ископаемые. Перспективные площадки по завершению данной стадии передаются на специализированные поисковые работы.

6iPfuqpBVe

2. Поиск месторождений. Геологи работают над обнаружением запасов определённых видов полезных ископаемых. Работы осуществляются в несколько промежуточных этапов. Вначале проводится поиск общего характера с целью выявления границ зоны потенциального размещения ископаемых. После этого обустраиваются горные выработки или скважины для выполнения структурно-геологических исследований. По результатам оценивается потенциальное промышленное значение месторождений. Если исследования оказались продуктивными, в этом случае осуществляется подсчёт ресурсов в категории C2. Составляются прогнозы добычи в количественном плане, а также разрабатывается технико-экономическое обоснование (ТЭО) продолжения геологоразведки.

3. Предварительная разведка. Геологи определяют промышленное значение участка, параметры месторождения, технологические свойства и размеры формаций полезных ископаемых, условия залегания. Составляется предварительная характеристика условий освоения блока. Результатами этой работы являются расчёт запасов не только в категории C2, но и C1, а также ТЭО на проведение детальной разведки. На этапе предварительной разведки применяется бурение (глубокое, колонковое или ударно-канатное). При изучении месторождений цветных металлов обустраиваются штольни, небольшие шахты, шурфы с целью отбора проб.

u5sRf5zpCV

4. Детальная разведка. Данный этап работ проводится исключительно на участках с доказанной промышленной ценностью запасов. Осуществляется дополнительный подсчёт запасов в категориях A и B. По завершению этого этапа должны быть собраны данные, достаточные для начала промышленной эксплуатации месторождения согласно требованиям к изученности исследуемой зоны, в соответствии с классификацией запасов и прогнозными ресурсами.

5. Доразведка. Проводится на участках, которые были в недостаточной степени изучены на предыдущих этапах работы. Кроме того, она осуществляется в пределах флангов, обособленных участков, в глубоких горизонтах горных отводов. На этой стадии проводится последовательный перевод ресурсов из категорий C1 и C2 в более высокие классы, подсчитываются новые выявленные запасы. На ряде объектов при этом строятся глубокие шахты как разведочного, так и эксплуатационно-разведочного назначения.

C8h024gO2g

6. Эксплуатационная разведка. Такой вид разведки проводится одновременно с проходческой работой, направленной на подготовку выработок. Мероприятия по разведке реализуются до момента начала очистных работ с целью обеспечения добычи на текущем этапе, а именно для уточнения информации о залежах, полученной на стадиях детальной разведки. Речь идёт о данных относительно качества, условий залегания, строения и морфологии пластов. На этапе эксплуатационной разведки проходка вертикальных, горизонтальных и наклонных выработок является основным методом работ. Кроме того, возможно обустройство перфораторных — безкерновых — или же колонковых скважин для получения керна.

Особенности разведки нефтегазовых месторождений

Специфика геологоразведки нефтегазовых месторождений обусловлена особенностями залегания и природными свойствами этих полезных ископаемых. Отличительной чертой нефти и газа является то, что их залежи находятся обычно в одних и тех же районах. Газ может быть как растворён в нефти, так и образовывать газовые шапки в верхней части пространства, занимаемого «чёрным золотом».

Накопление углеводородного сырья происходит в осадочных оболочках планеты. В общей сложности в мире выявлено порядка шести сотен нефтегазоносных бассейнов. Нефть и газ находятся на глубинах от одного до нескольких километров и распределены по микроскопическим пустотам. Около 85% запасов сконцентрированы в алевритовых песчаных породах с глиняной прослойкой, остальные ресурсы — в породах карбонатного типа. Огромны запасы шельфовых месторождений, однако степень их изученности крайне мала. Пронедра писали ранее, что, по данным Минприроды, более 90% площади арктического шельфа не разведаны.

Геологические экспедиции, которые занимаются изучением нефтегазовых месторождений, выполняют комплекс работ по исследованию структуры блоков, выделению продуктивных пластов, вычислению предполагаемых дебитов нефти, газа и конденсата, давления в залежах. Все эти данные используются для составления проектов эксплуатационных работ, а также для расчётных обоснований промышленной разработки участков.

RGdPRTAEuE

Стартует геологоразведка по стандартной схеме — со съёмки и составления геологических карт. В дальнейшем применяется гравитационная разведка. Выявление запасов по данной методике обусловлено отличительной особенность пород, насыщенных нефтью и газом — их плотность меньше, соответственно, и меньшим будет ускорение свободного падения. Нефтегазовые ресурсы выявляются в том числе с применением специфической аэромагнитной разведки, направленной на выявление антиклиналей — геологических ловушек для углеводородов мигрирующего характера на глубинах до семи километров.

3z97ycW9Tm

Аэромагнитная съёмка выполняется с помощью магнитометров, расположенных в хвостовом коке самолёта

Особенностью же проведения сейсморазведки является то, что такой вид исследования при поиске нефтегазовых запасов осуществляется не только для выявления залежей, но и с целью определения оптимальных мест для бурения скважин разведочного назначения. Одним из эффективных методов обнаружения ресурсов «чёрного золота» и «голубого топлива» является низкочастотное сейсмическое зондирование. Данный способ основан на анализе аномального изменения спектра естественного сейсмического фона в районе размещения залежей на частотах до 10 герц.

Оборудование для сейсморазведки

Нефть и газ также выявляются при помощи методики геохимической разведки. Геологи анализируют состав подземных вод на предмет содержания органических компонентов и газов. Рост концентрации таких элементов в единице объёма пробы воды может указывать на близость пласта. Тем не менее, самым достоверным и эффективным способом разведки углеводородов в настоящее время является непосредственное бурение скважины для выявления степени достаточности их объёмов для промышленного освоения месторождения. В среднем только в трети случаев после бурения обнаруживаются такие запасы.

Бурение разведочной скважины «Шахринав-1п», Таджикистан

В современной России геологоразведка нефтегазовых ресурсов производится не только с целью немедленной разработки конкретных блоков, но и для общего прироста количества углеводородов в соответствии с требованиями Энергетической стратегии, рассчитанной до 2020 года. Напомним, что, по мнению Владимира Путина, геологоразведка крайне важна для экономики России. Открытие и изучение новых месторождений — это работа на перспективу, поскольку выявленные ресурсы фактически являются сырьевым вкладом в будущее страны.

Источник

Дачные раскопки: можно ли найти у себя на участке нефть и другие полезные ископаемые

Рафаэль Залян

Петр Жуковский

700 5e9e9c8982682c6df7abefde

Истории известно немало случаев, когда люди находили на своих дачных или придомовых участках полезные ископаемые. Дальнейшая судьба таких находок решалась либо по усмотрению владельца земли, либо по закону государства, где нефтяное месторождение было выявлено. Например, американец Грег Лош, обнаруживший на своем небольшом участке черное золото, занялся его добычей. Теперь он получает со своей компактной скважины по несколько баррелей нефти в сутки. В России же право собственности на недра принадлежит государству. «Вечерняя Москва» решила узнать у юристов, что делать, если и вам удалось отыскать на своей территории нефть и другие полезные ископаемые.

По словам юриста и эксперта по недропользованию Анатолия Матвеева, если гражданин на территории России во время каких-либо бытовых раскопок наткнулся на нефтяные залежи, то вариантов развития событий может быть несколько.

— Пожалуй, самый простой способ — закопать эту яму и забыть о том, что вы там видели. Если вам, конечно, дорог ваш участок. По той причине, что нефть, полезные ископаемые и любые ценные ресурсы вам не принадлежат. В вашей собственности находится лишь территория, которая документально за вами закреплена. Но никак не нефтяные месторождения, которые были обнаружены, — пояснил Матвеев.

Следовательно, добывать нефть на собственном участке владелец этой земли никакого права не имеет.

— Даже если вы выкопаете на своей законной территории колодец для добычи нефти, никто к вам не прибежит с расспросами о том, что вы там ищете. Но если длина колодца будет превышать пять метров, — предостерегает юрист, — то будьте готовы к визиту сотрудников Россельхознадзора, которые непременно оштрафуют вас, заприметив нарушение.

Согласно российскому законодательству, отметил эксперт, все, что ниже пяти метров на участке, считается недрами и является собственностью государства, а не частного лица:

— Если открыть статью 19 закона России «О недрах», можно в этом убедиться. То есть, качая нефть или воду с глубины, превышающей пять метров, вы, конечно, можете обогатить себя полезными ресурсами, топливом или бесплатной водой, но в то же время сохраняется риск быть оштрафованным на миллионные суммы. Как это произошло с фермером из Челябинска, установившим на своем участке трубу на глубине десяти метров, чтобы качать нефть.

По словам юриста, владелец челябинской скважины получил штраф, превышающий четыре миллиона рублей.

Однако не спешите расстраиваться, если вы оказались в такой ситуации. Участок с нефтяными залежами можно продать заинтересованным лицам:

— Нефтеперерабатывающие компании охотно пойдут на сделку, убедившись, что на участке действительно имеются залежи. Но беда в том, что вы не сможете продать свой участок по рыночной стоимости. Придется согласиться на ту сумму, которую потенциальный покупатель предложит. В общем это палка о двух концах.

В противном случае, отметил спикер, ваша земля, если ссылаться на статью 279 Гражданского кодекса РФ, будет изъята для государственных или муниципальных нужд. Причем как таковой компенсации за отобранный участок может и не последовать.

В случае же добровольной передачи территории появится шанс договориться о цене компенсации.

— Но и здесь, — поясняет юрист, — не ждите баснословных сумм, так как предлагать солидные деньги за землю, которую практически бесплатно можно отобрать, государство не будет.

Эксперт отметил, что каждый гражданин волен сам решать, какой из вариантов ему больше подходит.

Как рассказал «ВМ» юрист и эксперт в сфере экологии Анатолий Артемьев, такие ресурсы добываются особым способом, который прописан в законе. Их владелец земли может извлекать из недр при условии, что ископаемые не числятся на государственном балансе.

— Вы имеете право строить сооружения под землей, чтобы добывать нужный вам элемент, но глубина ямы не может превышать пяти метров, — напоминает он.

Извлекать подземные воды тоже разрешено, но объем суточной добычи не может превышать 100 кубических метров.

— Если мы говорим о более ценных предметах (старинные монеты, золото или предметы роскоши) — все они считаются кладом, поскольку были кем-то там оставлены. Следовательно, о таких находках обязательно нужно сообщать правоохранительным органам, — продолжает Артемьев.

Поскольку же определить, кто именно спрятал клад, не так просто, законодательство, по словам эксперта, допускает право собственности на такие находки:

— Согласно действующим нормам, право на ценные предметы имеет тот, кому принадлежит данный участок земли. Если речь идет о находке, которая может иметь культурно-историческую ценность, то следует обратиться в полицию.

Если объект действительно оригинальный, то предметы передадут в государственные органы и затем отправят в музеи. Нашедший столь ценный клад человек не останется без вознаграждения. Согласно закону, как уточнил эксперт, гражданину заплатят 50 процентов от стоимости всего обнаруженного.

В случае если находка связана с останками древних животных, о ней тоже нужно сообщать в правоохранительные органы и обратиться к палеонтологам, которые помогут определить, что за существо «осело» на вашем участке.

Источник

Общие представления об источниках минеральных ресурсов

Строение земной коры

Все доступные для современного уровня технического развития минеральные ресурсы и основное количество энергетических ресурсов сосредоточены в теле нашей планеты.

В целом Земля имеет центрально симметричное строение и представляет собой геоид, радиус которого по экватору 6378 км, а по меридиану 6356 км (Rср = 6371,11 км). На современном уровне наших знаний принято считать, что Земля имеет внутреннее ядро, внешнее ядро, мантию и земную кору (литосферу).

Объектом промышленного освоения сегодня являются приповерхностные слои литосферы. Все остальное пока технически недоступно, а потому представляет собой минерально-сырьевую базу будущих поколений.

Содержание основных химические элементов в земной коре приведено в табл. 2.1.

t2.1Таблица. 2.1. Удельное количество разных элементов в земной коре

Кристаллические химические соединения элементов, слагающие земную кору, называются минералами. Ассоциации минералов образуют горные породы. Изучением минералов занимается минералогия, а горных пород — петрография, в задачу которой входит исследование породообразующих минералов.

Выделяют три основные группы пород: изверженные (магматические), осадочные и метаморфические.

Изверженные породы образуются при кристаллизации расплавов (магмы), поднимающихся с больших глубин. Магма изливается на поверхность при извержении вулканов. Значительная часть расплавов кристаллизуется внутри земной коры.

Осадочные горные породы образуются в морях как продукт разрушения и переотложения ранее существовавших горных пород.

Метаморфические горные породы формируются в результате преобразований изверженных и осадочных пород, когда на них оказывают воздействие высокие температура и давление.

Земная кора на 95 % состоит из изверженных пород, представленных преимущественно гранитами. На континентах на глубине 15–30 км граниты залегают сплошным слоем. В 100 т гранитных пород содержится в среднем 8 т алюминия, 5 т железа, 540 кг титана, 80 кг марганца, 30 кг хрома, 18 кг никеля, 9 кг меди, 4,5 кг вольфрама, 1,8 кг свинца. Осадочные отложения залегают на поверхности нашей планеты. В них содержатся нефть, газ, уголь, соли.

До настоящего времени общество вовлекает в эксплуатацию те элементы земной коры, которые в природных условиях сконцентрированы в виде минеральных и других ресурсов. Все эти ресурсы можно систематизировать по классам, группам и видам.

Согласно представлениям академика М.И. Агошкова, ресурсы земных недр разделяются на шесть основных групп.

I группа. Месторождения полезных ископаемых. В эту группу входят два основных вида.

Вид I.1. Месторождения твердых, жидких или газообразных полезных ископаемых однородного состава, представленные одной залежью или группой близко расположенных залежей с одинаковым или аналогичным химико-минералогическим однокомпонентным (мономинеральным) или многокомпонентным составом полезных ископаемых, для первичной переработки которых возможно применение единой технологии.

По условиям залегания, предопределяющим существенное различие в способах разработки, можно выделить месторождения, которые залегают:

К первому виду относится основная часть месторождений руд черных, цветных, благородных, редких, радиоактивных металлов, угля, горючих сланцев, горно-химического сырья, строительных и технических материалов, нефти, битумных сланцев, природного газа.

Вид I.2. Комплексные месторождения твердых, жидких и газообразных полезных ископаемых, представленные группой близко расположенных залежей с существенно различным химико-минералогическим составом. Разработку таких месторождений возможно, а иногда и технически необходимо вести совместно, из единой сети горных выработок, в одном шахтном или карьерном поле переработку же добытых полезных ископаемых различного состава целесообразно выполнять раздельно или по разным схемам.

Условия залегания, которые предопределяют способ разработки этого вида месторождений, аналогичны перечисленным выше в пунктах первого вида.

Число и роль комплексных месторождений в горной промышленности со временем все более возрастает; также увеличивается многообразие их по сочетанию различных видов полезных ископаемых.

Среди твердых полезных ископаемых известны комплексные месторождения, представленные близко расположенными залежами руд цветных металлов — свинцово-цинковых, бокситов и черных металлов — железа и марганца; месторождений рудных ископаемых с находящимися в непосредственной близости от них залежами нерудных ископаемых, в частности строительных материалов в виде пластов кварцитов, даек крепких изверженных пород, массивов пород гранитно-гнейсового типа, которые представляют собой во многих районах страны остродефицитный ценный материал для получения строительного щебня. Значительно число рудных месторождений, вмещающие породы которых содержат пласты мела, известняка, песка, глины. Классическим примером такого типа комплексных месторождений являются, например, Лебединское и Стойленское месторождения Курской магнитной аномалии.

К числу комплексных месторождений жидких и газообразных полезных ископаемых относятся многие газоконденсатные и нефтегазоконденсатные месторождения.

II группа. Горные породы вскрыши, размещаемые при открытой разработке месторождений в породных отвалах, часть которых может быть использована для получения строительных материалов. К этой же группе можно отнести раздельно складируемые в отвалах добытые забалансовые по качеству полезные ископаемые. В отвалах вскрыши и забалансовых полезных ископаемых заключено огромное количество продуктов недр, использование которых представляет задачу самой близкой перспективы.

III группа. Отходы горно-обогатительного и металлургического производства в виде отвалов горных пород от проходки подземных выработок (подобные отвалам пород вскрыши), отвалы хвостов обогатительных фабрик и промывочных установок золотосодержащих, оловоносных и других песков, отвалы металлургических шлаков. В практике значительные массы таких отходов, отвалов, приобретающие со временем промышленную ценность и вовлекаемые в разработку, иногда именуют «техногенными месторождениями». Особое место в этой группе ресурсов занимают отработанные воды обогатительного и металлургического производств, содержащие полезные компоненты. Промышленное использование — переработка их в некоторых случаях может быть экономически целесообразной.

IV группа. Глубинные источники пресных, минеральных и термальных вод. В связи с усилением дефицита поверхностных источников пресных вод стали эффективно эксплуатироваться подземные источники воды, часто имеющие огромные статические запасы и притоки. Что касается выгодности и перспектив использования глубинных минеральных и термальных вод, то пояснений к этому не требуется.

V группа. Внутреннее — глубинное тепло недр земли представляет в перспективе один из неиссякаемых и, возможно, наиболее дешевых источников тепловой энергии; использование его находится пока в самой начальной стадии, требует развития многоплановых научных исследований и постановки производственных экспериментов.

VI группа. Природные и созданные человеком (техногенные) полости в земных недрах, пригодные для размещения промышленно-хозяйственных и лечебных объектов, захоронения отходов производства и других целей. Использование этой группы ресурсов недр также находится в начальной стадии, имеет большие перспективы и требует широкого развития научных исследований.

Полезные ископаемые и их месторождения

Полезные ископаемые — это природные минеральные вещества, которые при данном уровне техники могут быть использованы в народном хозяйстве в естественном виде или после предварительной обработки.

Полезные ископаемые могут находиться в недрах Земли в твердом, жидком или газообразном состояниях.

Скопление твердого полезного ископаемого, залегающее среди горных пород, называется рудным телом. Руды залегают в земной коре в виде геологических тел различной формы.

Основные виды полезных ископаемых:

Естественное скопление полезного ископаемого (минерала или агрегата минералов) в земной коре, разработка которого экономична, называется месторождением полезного ископаемого. Месторождения могут быть коренными и россыпными.

Россыпные месторождения образовались в процессе физического выветривания коренных горных пород и химического воздействия на них различных факторов. Россыпные месторождения разделяются на элювиальные (залегают на месте разрушения коренных пород), делювиальные (перемещенные на некоторое расстояние от коренного месторождения и в большинстве случаев являющиеся продолжением элювиальных), аллювиальные (перемещенные на значительные расстояния водными потоками), береговые, ледниковые и эоловые (элювиальные россыпи, перенесенные силой ветра).

По добываемому полезному ископаемому различают рудные и нерудные месторождения. Рудой называется естественное минеральное вещество, из которого путем соответствующей переработки извлекаются содержащиеся в нем металлы и полезные минералы (табл. 2.2).

t2.2Таблица 2.2 Состав и плотность наиболее распространенных полезных минералов

t2.2 2

t2.2 3

Каждое месторождение полезных ископаемых располагается в пределах литосферы нашей планеты и поэтому представляет собой литосферный объект с физически выраженными или условными границами, главным свойством и идентификационным признаком которого является хозяйственная ценность вещества литосферы внутри этих границ.

Для использования полезных свойств этого объекта необходимо отделить его от окружающих пород и вынуть на поверхность с помощью комплекса работ, которые принято называть добычными. Поэтому в таком качестве определяющее значение приобретают горно-геологические свойства этого участка литосферы, т. е. те характеристики, от которых будет зависеть выбор решений по извлечению полезного ископаемого из литосферы.

Но так как в современной экономике основным и обязательным условием проведения любых действий является их доходность, то каждое месторождение может быть рассмотрено как экономический объект, главным свойством которого является положительная разница между ценностью получаемого из литосферного вещества и затратами на его извлечение. И, наконец, любое месторождение, будучи частью литосферы, является частью абиоты (неживой составляющей) всей экосистемы планеты Земля и каждой из ее частей. Поэтому использование вещества месторождения в хозяйственных целях меняет условия существования экосистем всех иерархических уровней и может быть рассмотрено как экосистемный объект, главным требованием к которому является сохранение биоты (живой части) экосистем.

Сущность профессии горного инженера заключается в извлечении из земной коры необходимых минеральных ресурсов с обязательным обеспечением оптимального баланса между требованиями и ограничениями, вытекающими из многозначности понятий месторождение полезного ископаемого и разработка месторождений.

Вполне очевидно, что извлечение из земных недр части вещества приводит к нарушению установившегося равновесия и тем самым изменяет свойства и состояние определенных участков литосферы с образованием в ней нового объекта — техногенно измененных недр. Этот объект можно представить себе как некий объем, окруженный нетронутой литосферой, внутри которого находится зона техногенного разрушения литосферы и зона спровоцированного этим разрушением изменения напряженно-деформированного состояния массивов горных пород.

Так как понятие «техногенно измененные недра» включает в себя также участки литосферы, затронутые сопутствующими изменениями при сохранении плотности горных массивов, то принципиальное значение приобретает вопрос о внешней границе этих сопутствующих изменений состояния, т. е. о границах нового техногенного литосферного объекта.

Задача о переходах между двумя системами с различными свойствами тоже рассматривается в теоретической экологии, где сформулировано понятие экотона — зоны перехода между различными биологическими сообществами, в которой проявляются их встречные влияния. Как видно из рисунка 2.2, экотон представляет собой полосу на поверхности, в пределах которой свойства контактирующих систем вырождаются до нуля. Закон вырождения свойств в каждом конкретном случае определяется свойствами систем и характером их взаимодействия. Такая модель достаточно адекватно описывает процессы взаимодействия техногенно измененных недр с невозмущенной литосферой. Она трехмерна: техногенно измененные недра предстают в виде замкнутого объемного литосферного объекта, ограниченного в пространстве двумя условными поверхностями «нулевого» влияния контактирующих систем; на внутренней поверхности не проявляется влияние невозмущенной литосферы, а на внешней — техногенно измененных недр (рис. 2.2).

2.2Рис. 2.2. Принципиальная схема формирования зоны перехода свойств (экотона) на контакте двух различных систем: 1 — закон вырождения свойств системы в; 2 — закон вырождения свойств системы А

Состояние породного массива в зоне прямого техногенного воздействия определяется особенностями процессов извлечения полезных ископаемых, т. е. набором необходимых для этого неизбежных действий. Если отвлечься от частностей, то для осуществления главной целевой функции добычи минерального сырья — включения части ресурсов литосферы в оборот вещества и энергии техносферы — необходимо обеспечить: доступ с земной поверхности к месту залегания полезного компонента, придать этому компоненту подвижность и выдать его на поверхность Земли. Это три обязательных этапа обобщенной функциональной модели техногенного изменения недр при добыче минерального сырья.

При строительстве подземных сооружений, когда полезным компонентом является пустота (создаваемые полости), схема остается в принципе такой же, но на втором этапе подвижность придается не полезному компоненту, а материалу литосферы, заполняющему будущую полезную полость. Тот же материал выдается на поверхность на третьем этапе.

В рамках функциональной модели добычи полезных ископаемых не существует качественных различий между открытым и подземным способом разработки месторождений. Разница между ними заключается только в величине соотношения размеров горизонтального сечения выработок доступа (Sд) и отрабатываемого участка литосферы (Sот): Sд ≥ Sот — открытая разработка; Sдот — подземная разработка (включая скважинную добычу флюидов).

Новое для вещества литосферы свойство — подвижность — может быть обеспечено в рамках применяемых геотехнологий либо дезинтеграцией этого вещества в заданном объеме (большая часть твердых полезных ископаемых), либо изменением его агрегатного состояния (например, выплавка серы), либо путем создания условий для миграции полезного компонента — физических (нефть, газ, вода, тепло) или химических (выщелачивание металлов на месте залегания).

Применительно к первому случаю все многообразие технических и технологических решений, используемых при освоении месторождений твердого минерального сырья, можно объединить в несколько групп, каждая из которых по своему влияет на изменение свойств природных объектов литосферы, характеризуется определенными геомеханическими параметрами, динамикой и масштабами последствий техногенного вторжения в литосферу.

Для каждой из групп характерны свои, только ей присущие способы техногенного изменения свойств участков литосферы и специфические последствия, проявляющиеся при восстановлении равновесия в техногенно измененных участках недр после завершения процессов добычи полезных ископаемых. Характерные особенности каждой группы могут быть с успехом использованы для разработки обобщенных моделей техногенного вторжения в природные объекты литосферы, прогноза последствий такого вторжения и механизма воспроизводства устойчивых динамических структур окружающей среды после отработки месторождения.

К первой группе относятся технические и технологические решения, связанные с образованием полостей различной конфигурации в недрах литосферы, которые обладают природной способностью противостоять возмущению исходного поля напряжений, вызванному появлением полостей. Возникающие на контуре выработок напряжения и деформации со временем релаксируют без сколько-нибудь заметного влияния на окружающий массив. Время существования таких выработок может исчисляться столетиями, и они не вызывают существенных изменений в окружающих их природных объектах (образованиях) литосферы.

Сюда относятся выработки различного назначения при подземном строительстве, очистные выработки при добыче штучного камня, каменной соли, руд черных и цветных металлов, особенно при разработке месторождений под дном морей и водоемов, когда несущие целики рассчитываются на длительную прочность с большим запасом. Этот способ выемки характеризуется низким (около 30–40 %) извлечением полезного ископаемого; основная масса запасов месторождения при этом сосредоточена в целиках. Развитие возмущений в литосфере при таком способе техногенного воздействия ограничивается поверхностными изменениями на контуре выработок и оставленных несущих опор, а вся картина перераспределения напряжений исходного поля охватывает незначительную часть массива, непосредственно прилегающую к выработанному пространству. Поведение таких выработок хорошо описывается классическими задачами теории упругости.

Характерной особенностью открытого способа разработки является то, что в соответствии с принятым порядком работ полезное ископаемое изымается только после того, как вынуты налегающие породы, в которых могли бы произойти изменения геофизических свойств. Поэтому описанная выше общая модель техногенно измененных недр принимает вид, в котором зона полного разрушения и техногенного изъятия материала литосферы целиком поглощает зону изменения физических свойств, и в состав техногенно измененных недр входят только собственно объем карьера и прилегающая к его внешним контурам зона перехода геофизических свойств.

Ко второй группе относятся наиболее распространенные в угольной промышленности, черной и цветной металлургии, на предприятиях химической промышленности технологии добычи минерального сырья с обрушением налегающей толщи пород. Различные модификации данного способа разработки применяются при выемке пологих, наклонных и крутых залежей любой формы, начиная с поверхности и до глубин, исчисляемых тысячей и более метров. Основная отличительная черта этих технологий — обязательное обрушение налегающей толщи пород вслед за выемкой полезного ископаемого. Отработка месторождения осуществляется планомерно сверху вниз при выемке крутопадающих либо наклоннопадающих рудных тел (пластов) от центра к флангам или от одного фланга к другому при выемке пологих залежей (пластов).

В результате по мере отработки месторождения происходят заполнение выработанного пространства обрушенными вмещающими породами, развитие зон неупругих перемещений за зоной непосредственного разрыхления пород и образование мульды сдвижения пород на поверхности. Эти процессы развиваются параллельно с отработкой месторождения, после чего происходят постепенное затухание необратимых деформаций во вмещающих породах и уплотнение обрушенных пород внутри мульды сдвижения. В случае, когда осуществляется разработка месторождения в очень прочных, жестких породах, происходит запаздывание с обрушением основной массы налегающих пород, образуется зависающая консоль монолитных пород висячего бока, которая затем может мгновенно сдвинуться в сторону выработанного пространства, генерируя сейсмические колебания большой энергии, соизмеримые с природным землетрясением (Апатиты, Таштагол).

При выемке пластовых месторождений формирование мульды сдвижения и ее параметров происходит аналогичным образом; этот механизм хорошо изучен для отдельных горных регионов (Донбасс, Кузбасс, Печорский угольный бассейн).

В целом модель техногенного вторжения такого рода может рассматриваться как объем определенных размеров, изменение которого сопровождается необратимыми процессами в ближней зоне и последующим ее уплотнением за счет распространения неупругого расширения (разрушения) пород вглубь массива. Границы зоны техногенного изменения пород литосферы определяются условием достижения равновесия между величиной реакции бокового распора нетронутого массива и отпором, создаваемым обрушенными и уплотненными породами зоны обрушения.

Третья группа технологий разработки месторождений минерального сырья связана с заполнением выработанного пространства искусственно получаемым материалом с определенными прочностными и деформационными свойствами. Иногда для уменьшения величины деформаций налегающей толщи пород и сокращения затрат на создание искусственного материала в выработанном пространстве оставляют регулярные вертикальные целики, работающие за пределом прочности. Размещенные в массиве закладки, они выполняют роль арматуры, изменяя деформационные свойства материала, заполняющего выработанное пространство.

Аналогичным образом происходит деформирование вмещающих пород при разработке нефтяных и газовых месторождений, когда по мере выработки нефти и газа снижается противодействие давлению налегающих пород, и они плавно оседают над продуктивной толщей на величину, соизмеримую с изъятым объемом. Таким образом, третья модель техногенного вторжения в литосферу характеризуется тем, что материал литосферы замещается техногенным материалом с известными (заданными) прочностными и деформационными свойствами, которые определяют масштабы переходной зоны, формирующей техногенно измененные недра как новый литосферный объект. По характеру релаксационных процессов эта модель занимает промежуточное положение между двумя представленными выше.

Источник

Оцените статью
Добавить комментарий

Adblock
detector