- Онлайн калькулятор. Длина отрезка. Расстояние между точками.
- Калькулятор для вычисления расстояния между двумя точками
- Ввод данных в калькулятор для вычисления расстояния между точками
- Дополнительные возможности калькулятора для вычисления расстояния между точками
- Теория. Расстояние между точками.
- Как вычислить длину отрезка зная координаты
- Эта страница существует благодаря следующим персонам
- Timur
- Урок 3 Бесплатно Отрезок. Длина отрезка
- Отрезок
- Длина отрезка
- Координаты вектора как найти длину отрезка по двум точкам, правило и формула нахождения в пространстве, свойства, задачи с решением, онлайн-калькулятор
- Общие сведения
- Проекция на ось координат
- Формула координат
- Примеры решения задач
- Использование онлайн-калькулятора
Онлайн калькулятор. Длина отрезка. Расстояние между точками.
Предлагаю вам воспользоваться онлайн калькулятором для вычисления расстояния между точками.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление расстояния между точками и закрепить пройденный материал.
Калькулятор для вычисления расстояния между двумя точками
Выберите необходимую вам размерность:
Введите координаты точек.
Ввод данных в калькулятор для вычисления расстояния между точками
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления расстояния между точками
Теория. Расстояние между точками.
Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
В зависимости от размерности задачи расстояние между двумя точками можно найти используя следующие формулы:
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Как вычислить длину отрезка зная координаты
Рассмотрим первый пример. Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.
Вычислим длину данных проекций. Итак, на ось Y длина проекции равна y2-y1, а на ось Х длина проекции равна x2-x1. Применим теорему Пифагора: |AB|² = (y2 – y1)² + (x2 – x1)². В данном случае |AB| является длиной отрезка.
Если использовать данную схему для вычисления длины отрезка, то можно даже отрезок и не строить. Теперь высчитаем, какова длина отрезка с координатами (1;3) и (2;5). Применяя теорему Пифагора, получаем: |AB|² = (2 – 1)² + (5 – 3)² = 1 + 4 = 5. А это значит, что длина нашего отрезка равна 5:1/2.
Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную Декартову систему координат.
Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки, они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.
Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.
Рассчитаем длину отрезка А, для этого найдем квадратный корень:
Если наш отрезок расположен между точками, координаты которых 2;4 и 4;1, то его длина, соответственно, равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.
Отрезком обозначают ограниченный двумя точками участок прямой. Точки – концы отрезка.
Общеизвестный факт, что каждая точка А плоскости имеет свои координаты (х, у).
В данном примере вектор AB задан координатами (х2— х1, y2— y1). Квадрат длины вектора будет равен сумме квадратов его координат. Следовательно, расстояние d между точками А и В, или, что то же самое, длина вектора АВ, вычисляется согласно формуле:
Эта формула длины отрезка предоставляет возможность рассчитывать расстояние между двумя произвольными точками плоскости, при условии, что известны координаты этих точек
Вышеуказанную формулу длины отрезка можно доказать и другим способом. В системе координат заданы координаты крайних точек отрезка координатами его концов(х1y1) и (х2,у2).
Прочертим прямые лини через эти точки перпендикулярно к осям координат, в результате имеем прямоугольный треугольник. Первоначальный отрезок является гипотенузой образовавшегося треугольника. Катеты треугольника сформированы отрезками, их длиной будет проекция гипотенузы на оси координат.
Установим длину этих проекций.
На ось у длина проекции равна y2 – y1, а на ось х длина проекции равна х2 – х1. На основании теоремы Пифагора видим, что |AB|² = (y2 – y1)² + (x2 – x1)².
В рассмотренном случае |AB| выступает длиной отрезка.
Вычислим длину отрезка АВ, для этого извлечем квадратный корень. Результатом является все та же формула длины отрезков по известным координатам конца и начала.
Этот онлайн калькулятор рассчитывает длину отрезка и координаты середины отрезка (средней точки) по декартовым координатам концов отрезка. Отрезок и средняя точка отображаются на графике, также на графике показан графический способ нахождения середины отрезка.
Эта страница существует благодаря следующим персонам
Timur
Этот онлайн калькулятор рассчитывает длину отрезка и координаты середины отрезка по введенным декартовым координатам двух точек – концов отрезка.
Отрезок и средняя точка отображаются на графике. Также среднюю точку можно найти построением. Для этого на графике надо построить две дуги с центрами на концах отрезка и с радиусом равным длине отрезка. Затем надо построить прямую линию между точками пересечения дуг. Эта линия пересечет исходный отрезок в середине.
Урок 3 Бесплатно Отрезок. Длина отрезка
Начнем знакомство с одним из разделов математики, который называется геометрия.
Становление данной науки происходило тысячелетиями.
Сегодня обратим внимание на основные, базовые геометрические фигуры, такие как точка и отрезок.
Узнаем, что называют ломаной линией, какие геометрические фигуры называют многоугольниками, рассмотрим их основные элементы и характеристики.
Научимся сравнивать, находить длины отрезков.
Познакомимся с различными единицами измерения отрезков.
Рассмотрим свойства измерения длин отрезков.
Отрезок
Геометрическая фигура- это математическая модель, в которой рассматривается только форма и размер, не обращая внимания на иные свойства и состояния (цвет, из какого материала изготовлены, в каком состоянии находятся).
Как здания складываются из кирпичиков, так и сложные геометрические фигуры состоят из базовых фигур.
Одной такой элементарной фигурой является точка.
В реальности моделью, которая дает представление о точке может стать, например, след, оставленный острием карандаша, или отверстие на бумаге от швейной иглы.
Слово «точка» с латинского языка означает мгновенное касание, укол.
Точку принято рассматривать как некоторое место в пространстве или на плоскости.
Принято обозначать точки заглавными латинскими буквами (А, В, С и т.д.).
Две точки на плоскости можно соединить бесконечным множеством линий.
Самой короткой линией, соединяющей две точки на плоскости, будет прямая, проведенная по линейке через эти две точки.
Кратчайшая линия между двумя точками называется отрезком.
Любые две точки можно соединить только одним отрезком.
Точки, ограничивающие отрезок, называются концами отрезка.
Отрезок обозначают указанием имен его концов.
Через точки А и В с помощью линейки провели прямую.
Так как отрезок обозначают именами точек, получим отрезок АВ или ВА.
Пишут и говорят так: «Отрезок АВ» или «Отрезок ВА».
В названии отрезка не важно в каком порядке указываются его концы.
Отрезок можно построить с помощью линейки.
Для этого необходимо к отмеченным на плоскости точкам приложить линейку и провести прямую от одного конца отрезка до другого.
Чтобы с помощью линейки начертить отрезок, который длиннее чем сама линейка, нужно поступить следующим образом:
Между точками А и В отметить точку С.
Затем передвинем линейку так, чтобы левый конец линейки оказался около точки С, по правому концу линейки отложим точку D.
Последовательно соединив концы отрезков, получится отрезок AD, который длиннее, чем линейка.
У меня есть дополнительная информация к этой части урока!
Давайте разберемся, как могут располагаться точки по отношению к отрезку:
1. Точка лежит на отрезке.
Говорят: «Точка G принадлежит отрезку ».
Записывают это так: G ∈ AB
2. Точка не лежит на отрезке.
Говорят: «Точка не принадлежит отрезку ».
Записывают это так: R ∉ AB
Пройти тест и получить оценку можно после входа или регистрации
Длина отрезка
Каждый отрезок имеет определенную длину, значение которой является числом.
Так как каждый отрезок имеет длину, отрезки можно измерять и сравнивать.
Существует несколько способов сравнения отрезков.
1. Приблизительный способ сравнения.
Данный способ сравнения применяют только в том случае, когда длины отрезков явно отличаются.
Пример: Даны два отрезка АВ и ЕР
Очевидно, что отрезок АВ длиннее отрезка ЕР, значит, АВ > ЕР
Метод заключается в следующем: совмещаются два отрезка друг с другом так, чтобы совпали их концы с одной стороны.
По расположению других концов относительно друг друга можно оценить какой из отрезков длиннее, а какой короче.
Если при наложении отрезков друг на друга длины отрезков совпадут, то отрезки равны (отрезки в этом случае будут равными фигурами).
Если при наложении отрезков друг на друга один из отрезков будет составлять часть второго, то первый отрезок является короче второго (т.е. длина первого меньше длины второго).
Пример: Даны два отрезка АВ и ОЕ
Сравним данные отрезки методом совмещения отрезков.
Совместим левый конец А отрезка АВ и левый конец О отрезка ОЕ.
Можно заметить, что отрезок ОЕ составляет часть отрезка АВ.
Значит, отрезок ОЕ короче отрезка АВ.
Данный метод удобен, если есть возможность перемещать отрезки, совмещать один с другим.
3. Сравнение отрезков с помощью измерителя.
Если нет возможности перемещать сравниваемые отрезки, то можно использовать промежуточный измеритель.
В математике для этих целей используют специальный чертежный инструмент, который называется циркулем.
Чтобы сравнить отрезки с помощью циркуля, необходимо совместить концы отрезка с ножками циркуля.
Не меняя раствор циркуля, приложить его ко второму отрезку и сравнить.
Если нет возможности сравнить отрезки наложением и нет циркуля под рукой, то в качестве измерителя можно использовать нитку.
В таком случае нужно нитку приложить к исходному отрезку, на нитке по отрезку сделать замер, затем нитку приложить ко второму отрезку, оценить расположение замера на нитке по отношению к исследуемому отрезку, сделать вывод.
Пусть даны три отрезка СD, АЕ, BG
Сравним эти отрезки с помощью циркуля.
Соединим ножки циркуля с концами С и D отрезка СD.
Приложим циркуль с заданным раствором к отрезку АЕ.
Концы измерителя совпали с точками отрезка АЕ, значит, отрезки CD и AE равны: (CD = AE).
Приложим циркуль с заданным раствором к отрезку BG.
Отрезок выходит за концы измерителя, т.е. является частью отрезка BG, следовательно, отрезок BG длиннее отрезка СD: (BG > СD).
Все рассмотренные способы сравнения длины отрезков проводят без определения значения длины сравниваемых отрезков.
4. Существует еще один способ сравнения длины отрезков путем измерения их длинны.
Для этого необходимо сначала измерить длину каждого отрезка, далее сравнить полученные значения их длины и сделать вывод.
Большим будет являться тот отрезок, длина которого больше.
Соответственно, если длины измеряемых отрезков равны, то и отрезки равны.
У меня есть дополнительная информация к этой части урока!
Ломаная линия
Если последовательно соединить отрезки так, чтобы конец одного отрезка являлся началом следующего (при этом соседние отрезки не лежат на одной прямой), то образуется геометрическая фигура, которая называется ломаной линией.
Отрезки, из которых состоит ломаная линия, называют звеньями.
Концы отрезков называют вершинами ломаной.
Самые крайние вершины ломаной называют концами ломаной
Обозначение ломаной линии составляют из названий вершин этой ломаной, называя их по порядку.
Длиной ломаной называется сумма длин всех ее звеньев.
На рисунке изображена ломаная линия АBCDE.
Вершины ломаной АBCDE: А, B, C, D, Е.
Звенья ломаной АBCDE: AB, BC, CD, DE.
Найдем длину ломаной АВСDE:
АВСDE = AB+ BC+ CD+ DE = 2 см + 3 см + 4 см + 5 см = 14 см
Ломаная, концы которой совмещаются, называется замкнутой.
Многоугольником называется фигура, ограниченная замкнутой ломаной линией, звенья которой не пересекаются.
Отрезки (звенья) ломаной линии называют сторонами многоугольника.
Общие точки двух отрезков (сторон) многоугольника называют его вершинами.
Каждая пара сторон многоугольника, сходящиеся в одной точке, образуют углы многоугольника.
Количество сторон и количество углов в многоугольнике совпадают.
Вершины, стороны и углы многоугольника обозначаются аналогично ломаной линии.
Многоугольник принято обозначать и называть по его вершинам, начиная с любой вершины и называя их последовательно, в любом порядке.
На рисунке изображен многоугольник АBCDEF.
Вершины многоугольника АBCDEF: А, B, C, D, Е, F.
Стороны многоугольника АBCDEF: AB, BC, CD, DE, EF, FA.
Любые многоугольники можно сравнить: два многоугольника называются равными, если они совпадают при наложении.
Зная длину каждой стороны многоугольника, можно найти периметр этого многоугольника.
Периметр многоугольника принято обозначать заглавной латинской буквой Р
Найдем периметр многоугольника АBCDEF (изображенного на рисунке):
РАВСDEF = AB+ BC+ CD+ DE+ EF+ FA = 2 см + 3 см + 2 см + 2 см + 3 см + 2 см = 14 см.
Существует огромное множество различных видов многоугольников.
Обычно многоугольники различают по числу сторон и углов.
Многоугольник с наименьшим числом вершин, сторон и углов называют треугольником.
Треугольник часто обозначают символом «Δ» и тремя заглавными латинскими буквами, которые обозначают его вершины.
На рисунке изображен треугольник АBC (Δ АBC).
Отрезки AB, BC, АC— стороны треугольника АBC.
Периметр треугольника- это сумма длин трех его сторон.
Найдем периметр треугольника АBC (изображенного на рисунке):
РАВС = AB+ BC+ АС = 4 см + 6 см + 3 см = 13 см.
Пройти тест и получить оценку можно после входа или регистрации
Координаты вектора как найти длину отрезка по двум точкам, правило и формула нахождения в пространстве, свойства, задачи с решением, онлайн-калькулятор
При рассмотрении отрезков с заданным направлением часто используют декартову систему координат. Найти на ней вектор — значит, определить значения начальной и конечной точки. То есть при решении задач оперируют не геометрическими параметрами, а числовыми характеристиками. Такой подход позволяет перейти от геометрии к алгебре. Этот метод называется координатным и применим как к плоскому пространству — двухмерному, так и объёмному — трёхмерному.
Общие сведения
Под термином «вектор» принято понимать прямую с определённым направлением, ограниченную начальной и конечной точкой. Фактически это отрезок, в котором известно, где его начало и конец. Обозначают его с помощью заглавных латинских букв и стрелочкой над ними. Например, если имеется вектор, берущий начало в точке A и заканчивающийся в B, то его подписывают как AB. Но также существует и короткое обозначение — одной малой буквой со стрелкой (чертой) над ней.
При работе с отрезками приходится сталкиваться с понятием «коллинеарность». Если векторы можно совместить параллельным переносом, и линии необязательно являются равными, то их называют коллинеарными. При этом их направление не имеет значения. Если же они совпадают по нему, то такие отрезки называют сонаправленными.
Тут следует учесть, что отрезки будут направлены в одну сторону лишь только тогда, когда их лучи находятся по одну сторону от прямой, объединяющей их начала. Когда векторы коллинеарны и не сонаправлены, то они противоположные. Осюда можно сформулировать правило, что два ненулевых вектора являются коллинеарными, если они располагаются на одной или на параллельных прямых. Причём точка считается коллинеарной любому отрезку.
При работе с отрезками можно выполнять различные арифметические операции на основании их свойств. Математические правила нахождения положения общего вектора называются линейными. Выделяют следующие действия над ограниченными прямыми:
Кроме того, вектор можно умножить на число или разложить на составляющие компоненты. Всё это позволяет построить базисный отрезок для нахождения в дальнейшем его координат. При этом если существует перпендикулярность двух векторов, то отрезок к направляющей ограниченной линии называют нормальным или ортогональным.
Проекция на ось координат
Определить координаты отрезка возможно различными способами. Один из них — использование проекции. Другими словами, изображаются в координатных плоскостях начало и конец вектора, которые соединяются прямой линией. Откладывать расположение точек нужно в соответствии с используемым масштабом. После с помощью перпендикулярных координатным осям линий на них переносят расположение начала и конца вектора, то есть как бы проецируют отрезок на оси.
При этом если направление перенесённого вектор совпадает с направлением оси, то проекция обозначается со знаком плюс, если же оно противоположное — со знаком минус. Обозначают перенос отрезков символом ПР. Существуют несколько свойств, характерных для проекции:
Если отрезок располагается перпендикулярно оси, то его проекцией будет точка. Для декартовой системы координат в записи вектора на одном из мест будет стоять ноль. Например, AB (0; 1) или AB (-3; 0). Для задания направления в пространстве применяют так называемый единичный вектор.
Другими словами, он является отрезком нормирования пространства и обозначает масштаб проекции. Его выбирают в качестве базисного вектора, что заметно помогает упростить расчёты. Для того чтобы его вычислить, необходимо вектор разделить на длину: e = AB / | AB |. Такая операция называется нормированием.
Формула координат
При построении отрезка единичный вектор выбирается исходя из удобства размещения его в плоскости. Начальная и конечная точка могут быть определены в координатной плоскости. Чаще всего для этого используется декартова система координат. К расположениям осей жёстких требований нет, но принято по горизонтали рисовать ось икс в правом направлении, а по вертикали снизу вверх — ось игрек. Пересекаются эти оси между собой под прямым углом и место их пересечения называют началом отсчёта. В этой точке координата записывается как (0, 0).
Исходя из этого, чтобы нарисовать вектор на плоскости, нужно узнать координаты его начальной и конечной точек, а также направление. Для получения рисунка вектора нужно просто соединить эти две точки. Из знания значений, ограничивающих точки отрезка, довольно легко определить координаты вектора.
Это выражение справедливо не только для плоскости, но и для нахождения координат в пространстве. В этом случае добавляется третья осью. Обозначается она часто буквой Z. Соответственно, каждая точка будет описываться уже не двумя координатными значениями, а тремя — по числу осей: A (x1, y1, z1) и B (x2, y2, z2). Отсюда следует, что координаты вектора определяются уже по формуле: AB = (x2 — x1; y2 — y1; z2 — z1).
При сложении, умножении, вычитании двух ограниченных линий нужно выполнять поэлементно действия над их координатами. Например, AB (x 1, y 1) + BC (x 2, y 2) = AC (x 1 + x 2, y 1 + y 2).
Примеры решения задач
В своём большинстве задачи на поиск длины вектора по координатам или просто вычисление расположения отрезка в плоскости не представляет труда. Но эти действия нужно уметь выполнять, так как проекции очень часто используются при рассмотрении различных физических процессов.
Есть типовые задачи, дающиеся в седьмом классе средней школы для самостоятельной работы. Проработав их и научившись находить ответ, можно будет утверждать о знании темы. Вот один из вариантов примеров разной сложности:
Вот задача посложнее. Имеются две точки на плоскости. Первая имеет координаты L (1, 5), а вторая J (2, 7). Нужно найти длину соединяющего их отрезка. Для наглядности можно нарисовать чертёж, на которой изобразить эти две точки и объединяющую их прямую. Затем из этих координат нужно провести два перпендикуляра, таким образом, чтобы они пересеклись. Место их пересечения нужно как-то обозначить. Пусть это будет буква T.
Посмотрев на рисунок, можно заметить, что полученная фигура есть не что иное, как прямоугольный треугольник. Получается, что отрезки LT и JT— это катеты. Поэтому нужно лишь найти их длины по модулю и применить теорему Пифагора. Осюда, длина: |LT| = x2 — x1 = 7 — 5 = 2, |JT| = 2 — 1 =1. Исходя из формулы для нахождения гипотенузы, искомая длина будет равняться: d = √ LT 2 + JT 2 = √ 2 2 + 1 2 = √5.
Таким образом, все задачи на нахождение длины или расположения отрезка решаются через формулу координат. При этом не имеет значения, какое пространство рассматривается. Она справедлива как к двухмерному, так и n-мерному.
Использование онлайн-калькулятора
На практике чаще всего решение задач подразумевает нахождение какого-либо параметра в пространстве. Особенно это характерно для физики при изучении электромагнетизма или движения. Нередко приходится на координатных осях откладывать точки, в итоге образующие сложную фигуру. Поэтому даже незначительная, на первый взгляд, ошибка приведёт к неправильному ответу.
Гораздо эффективнее использовать так называемые онлайн-калькуляторы. Это обычные сайты, содержащие специальные программы для расчёта математических заданий. Пользоваться ими сможет любой, у кого есть доступ к интернету и установленный веб-браузер. Всё что требуется от пользователя, это просто в предложенную форму ввести исходные данные и нажать интерактивную кнопку, часто подписанную «Вычислить». Приложение запустится автоматически и через несколько секунд выдаст ответ. При этом за его точность можно не переживать. Ведь в основе работы программы используются алгоритмы на основе математических формул.
Из наиболее популярных сервисов, предоставляющих бесплатный доступ к своим услугам, можно выделить следующие:
Это сервисы доступны на русском языке, имеют простой и понятный интерфейс. Их услуги привлекательны как для инженеров, выполняющим сложные расчёты, так и учащихся. Для первых это экономия времени и точный результат, а для вторых — отличное подспорье в учёбе. Всё дело в том, что эти сайты на своих страницах содержат весь необходимый теоретический материал с примерами вычислений. Кроме того, программа не просто выдаёт расчёт, но и выводит на дисплей пошаговое решение с описанием ключевых моментов.
Таким образом, даже ничего не понимая, ученик, попробовав решить несколько заданий, научится самостоятельно вычислять ответ. Векторные формулы отлично поддаются автоматизированному вычислению. Поэтому часто есть резон решать задания по нахождению векторных координат на онлайн-калькуляторе.