Как найти дополнение множества

woman 2564660 1920 Советы на день

Как найти дополнение множества

2.4. Дополнение множеств. Мощность множеств

Если универсальное множество не указано или оно не ясно из контекста, то говорить о дополнении множества А недопустимо.

На диаграммах Эйлера универсальное множество I изображается множеством точек некоторого прямоугольника, а его подмножества – в виде кругов внутри этого прямоугольника. Дополнение множества А будет изображено в таком случае той частью прямоугольника, которая лежит за пределами круга (заштрихованная часть рис.2.11).

image007

Для любых подмножеств А и В универсального множества I справедливы следующие утверждения:

1) image009 = А ;

4) А È ( А Ç B )= А, А Ç ( А È B )= А – законы поглощения;

Пусть существует два конечных множества А и В, количество элементов которых N ( A ) и N ( В). Тогда

Эта формула называется формулой включений и исключений и позволяет решать многие задачи теории множеств.

Из (2.4) следует, что если множества А и В не пересекаются, то

Для пересекающихся множеств А и В

image027 N ( A ) + N (В) + N (С) – N (А Ç В) – N ( B Ç C ) – N (А Ç C ) + N (А Ç В Ç C ).

image029 N ( A ) + N (В) + N (С).

В том случае, когда универсальное для рассматриваемых подмножеств множество I также является конечным, то

image033 N ( I ) – N (А) ;

image035 N ( I ) – N (А È В)= N ( I ) – N ( A ) – N (В) + N (А Ç В).

image037 N ( I ) – N ( A ) – N (В) – N (С) + N (А Ç В)+ N ( B Ç C ) + N (А Ç C )- N (А Ç В Ç C ).

Пример 2.5. В 101 группе – 29 студентов. Каждый из них изучает или английский, или немецкий язык. 5 студентов изучает и английский, и немецкий одновременно. Сколько студентов занимаются в английской группе, если в немецкой – 12 студентов.

image049

Итак N ( А Ç В Ç С Ç D ) ³ 10, т.е. не менее 10 пиратов одновременно лишились и глаза, и уха, и руки, и ноги.

Если каждому элементу множества А можно по некоторому правилу поставить в соответствие один и только один элемент множества В и, наоборот, каждому элементу множества В по некоторому правилу можно поставить в соответствие один и только один элемент множества А, то говорят, что между элементами множеств А и В установлено взаимно-однозначное соответствие. В этом случае множества А и В называют эквивалентными и записывают: А

Очевидно, что равночисленные множества эквивалентны. И, наоборот, два эквивалентных конечных множества равночисленны.

Этот факт является логически чрезвычайно важным, так как для установления равночисленности конечных множеств нет необходимости обладать понятием натурального числа, с помощью которого мы подсчитываем элементы множеств. Напротив, теперь само понятие натурального числа получает новую трактовку: оно есть количественная характеристика, общая всем эквивалентным между собой конечным множествам. Теперь можно, пользуясь только понятиями «множество», «принадлежность», « взаимно-однозначное соответствие» построить всю теорию натуральных чисел.

Рассмотрим теперь бесконечные множества. Для сравнения бесконечных множеств нельзя использовать понятие натурального числа, ибо нельзя пересчитать все элементы таких множеств и поставить им в соответствие натуральное число. Однако их можно сравнивать при помощи понятий « взаимно-однозначное соответствие», «эквивалентность».

N и множество целых отрицательных чисел является счетным.

Если для конечных эквивалентных множеств мы говорили, что они равночисленны, то о бесконечных множествах будем говорить, что они равномощны, т.е. имеют одинаковую мощность. Все эквивалентные бесконечные множества характеризуются их мощностью.

Понятие мощности бесконечного множества аналогично понятию числа конечного множества. Мощность – обобщение понятия «количество» для бесконечных множеств. Оно позволяет сравнивать различные бесконечные множества.

Источник

Как найти дополнение множества

Объединение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств X или Y, т.е. принадлежат X или принадлежат Y.

Объединение X и Y обозначается через X∪Y

Формально x∈X∪Y ⇔ x∈X или x∈Y

Пример 3. Если X — множество точек левого круга и Y — множество точек правого круга, то

X∪Y — заштрихованная область, ограниченная обоими кругами.

представляет собой множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств данной системы М.

Для объединенных множеств справедливы:

справедливость которых вытекает из того, что левая и правая части равенств состоят из одних и тех же элементов.

Очевидно, что X∪∅ = X. Отсюда можно видеть, что ∅ играет роль нуля в алгебре множеств.

2. Пересечение множеств

Пересечение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству X, так и множеству Y.

Пересечение множеств обозначается X∩Y.

Формально x∈X∩Y ⇔ x∈X и x∈Y

Пример 5. Если Х — множество точек левого круга, а Y — множество точек правого круга, то X∩Y представляет собой заштрихованную область, являющуюся общей частью обоих кругов.

Множества X и Y называются непересекающимися (дизъюнктными), если они не имеют общих элементов, то есть если X∩Y=∅.

Частный случай: кортеж длины 1 —

кортеж длины 0 — или ∧ — пустой кортеж.

Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы.

Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства (n-мерного).

Два вектора равны, если они имеют одинаковую длину и соответствующие координаты их равны.

Компонентами кортежа (вектора) могут быть также компоненты кортежи (векторы):

Пример. Слова в предложении,

Прямое произведение множеств

Прямым (декартовым) произведением множеств X и Y называется множество, состоящее из всех тех и только тех упорядоченных пар, первая компонента которых принадлежит множеству X, а вторая принадлежит множеству Y.

Пример 3. Пусть X и Y — отрезки вещественной оси. Прямое произведение X*Y изображается заштрихованным прямоугольником. См. рис. б).

Прямое произведение изменяется при изменении порядка сомножителей т.е.

Очевидно X*Y = ∅ ⇔ X = ∅ или Y = ∅.

Частным случаем прямого произведения является понятие степеней (декартовых) множества — прямое произведение одинаковых множеств

M s =M*M*. *M, M 1 =M, M 0 =∧.

Обычно R — множество вещественных чисел, тогда R 2 =R*R — вещественная плоскость и R 3 =R*R*R — трехмерное вещественное пространство.

Проекция множества.

Операция программирования множества тесно связана с операцией проектирования кортежа и может применяться лишь к таким множествам, элементами которых являются кортежи одинаковой длины.

Пусть M — множество, состоящее из кортежей длины S. Тогда пролинией множества M будем называть множество пролиний всех кортежей из М

Очевидно что если М=Х*Y то Пр1М=Х, Пр2М=Y

и если Q⊆Х*Y то Пр1Q⊆Х и Пр2Q⊆Y

Пусть V — множество векторов одинаковой длины S.

В общем случае ПрiV — вовсе не обязательно прямое произведение: оно может быть подмножеством.

Источник

Дополнение множества

Дополне́ние в теории множеств — это семейство элементов, не принадлежащих данному множеству.

Содержание

Разность множеств

Определение

ab99ce7f2722569b4b1eaf7bdb1dc023

630fd4acbbf4d15b0aa5e96fceedabef

Примеры

Свойства

Пусть A,B,C — произвольные множества. Тогда

Компьютерные реализации

Дополнение множества

Определение

f63b86b82bb01f227760c8d4e8d62e76

Свойства

См. также

Полезное

Смотреть что такое «Дополнение множества» в других словарях:

Дополнение (теория множеств) — Дополнение в теории множеств это семейство элементов, не принадлежащих данному множеству. Содержание 1 Разность множеств 1.1 Определение 1.2 Примеры 1.3 Свойства … Википедия

Дополнение (математика) — Дополнение в теории множеств это семейство элементов, не принадлежащих данному множеству. Содержание 1 Разность множеств 1.1 Определение 1.2 Примеры 1.3 Свойства … Википедия

ДОПОЛНЕНИЕ — операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

Дополнение графа — Граф Петерсена (слева) и его дополнение (справа). В теории графов дополнением или обратным к графу G называется такой граф H, имеющий то же множество вершин, что и G, но в котором две несовпадающие вершины смежны тогда и только тогда, когда они… … Википедия

дополнение к множеству — такое множество не А, когда A + не А = 1, где 1 обозначает некоторую предметную область (универсальный класс). Пусть A будет множеством млекопитающих, а областью нашего рассуждения будет множество позвоночных животных. Тогда дополнением к нему… … Словарь терминов логики

ДИЗЪЮНКТНОЕ ДОПОЛНЕНИЕ — множества А множество всех элементов х векторной решетки (векторной структуры) X, дизъюнктных множеству (см. Дизъюнктные элементы). кроме того, если X векторная условно полная решетка, то Add является наименьшей компонентой пространства X,… … Математическая энциклопедия

Плотные и неплотные множества — понятия множеств теории (См. Множеств теория). Множество Е называется плотным на М, если каждая точка множества М является предельной точкой (См. Предельная точка) Е, т. е. в любой окрестности имеются точки, принадлежащие Е. Плотные… … Большая советская энциклопедия

Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… … Википедия

КАТЕГОРИЯ МНОЖЕСТВА — топологическая характеристика массивности множества. Множество Етопологич. пространства Xназ. множеством первой категории на X, если оно представимо в виде конечной или счетной суммы множеств, нигде не плотных на X. В противном случае Еназ.… … Математическая энциклопедия

Существование перечислимого неразрешимого множества — В данной статье будет доказан теорема о существовании перечислимого, но неразрешимого множества. Напомню, что по теореме Поста перечислимое множества разрешимо тогда и только тогда, когда его дополнение перечислимо.Основные определения, такие как … Википедия

Источник

Дополнение (теория множеств)

Дополне́ние в теории множеств — это семейство элементов, не принадлежащих данному множеству.

Содержание

Разность множеств

Определение

ab99ce7f2722569b4b1eaf7bdb1dc023

630fd4acbbf4d15b0aa5e96fceedabef

Примеры

Свойства

Пусть A,B,C — произвольные множества. Тогда

Компьютерные реализации

Дополнение множества

Определение

f63b86b82bb01f227760c8d4e8d62e76

Свойства

См. также

Полезное

Смотреть что такое «Дополнение (теория множеств)» в других словарях:

Теория множеств — Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой… … Википедия

Наивная теория множеств — Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… … Википедия

Описательная теория множеств — Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… … Википедия

ДЕСКРИПТИВНАЯ ТЕОРИЯ МНОЖЕСТВ — раздел теории множеств, изучающий внутреннее строение множеств в зависимости ют тех операций, при помощи к рых эти множества могут быть построены из множеств сравнительно простой природы (напр., замкнутых или открытых подмножеств данного… … Математическая энциклопедия

Алгебра (теория множеств) — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение … Википедия

РЕКУРСИВНАЯ ТЕОРИЯ МНОЖЕСТВ — раздел тео рии рекурсивных функций, в к ром рассматриваются и классифицируются подмножества натуральных чисел с алгоритмич. точки зрения, а также исследуются структуры, возникающие в результате такой классификации. Для каждого множества А, к рое… … Математическая энциклопедия

Принцип двойственности (теория множеств) — У этого термина существуют и другие значения, см. Принцип двойственности. Принцип двойственности в абстрактной теории множеств. Пусть дано множество М. Рассмотрим систему всех его подмножеств А, В, С и т. д. Справедливо следующее предложение:… … Википедия

Дополнение — В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

Теория моделей — Теория моделей раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория … Википедия

МНОЖЕСТВ ТЕОРИЯ — Под множеством понимается совокупность каких либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов.… … Энциклопедия Кольера

Источник

Дополнение

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

В случаях, когда одно из множеств является подмножеством другого, А \ В называют дополнением множества В до множества А, и обозначают символом В’А

image070

Пусть В image012А. Дополнением множества В до множества А называется множество, содержащее все элементы множества А, которые не принадлежат множеству В. В image012А, А \ В = ВА,ВА= <х| х image004А и х image006В>.

Часто ограничиваются рассмотрением всевозможных подмножеств одного и того же множества, которое в этом случае называют основным или универсальным множеством. Обозначим основное множество буквой E. Для любого множества А, принадлежащего основному множеству Е, справедливы равенства: А U Е = Е, АЕ = А.

Множество элементов основного множества Е, не принадлежащих множеству А, называется дополнением множества А до множества Е или просто дополнением и обозначается А’.

image076Объединение множества А и его дополнения А’ есть основное множество: А U А’ = E.

Пересечение множества со своим дополнением пусто: АА‘ = Ø.

Дополнение пустого множества есть основное множество: Ø’ = E, а дополнение основного множества пусто: Е’ = Ø.

На рисунке основное множество Е схематически изображено в виде прямоугольника, его подмножество А заштриховано, не заштриховано дополнение множества А’.

Источник

Оцените статью
Добавить комментарий

Adblock
detector