Элементарные функции и их графики
Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».
И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.
Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.
Существует всего пять типов элементарных функций:
2. Показательные
Это функции вида y = a x
4. Тригонометрические
В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.
Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.
Графики и свойства основных элементарных функций следует знать наизусть.
a > 1 | ||||||||
0 1 | ||||||||
0 2 + 5? Об этом — статья «Преобразования графиков функций». Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций. Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз. Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически. Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки». Функции и графикиИзучение свойств функций и их графиков занимает значительное место как в школьной математике, так и в последующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве узко профессиональных предметов. Например, в экономике – функции полезности, издержек, функции спроса, предложения и потребления. в радиотехнике – функции управления и функции отклика, в статистике – функции распределения. Чтобы облегчить дальнейшее изучение специальных функций, нужно научиться свободно оперировать графиками элементарных функций. Для этого после изучения следующей таблицы рекомендую пройти по ссылке «Преобразования графиков функций». и/или по ссылке Построение графиков, содержащих модуль аргумента или модуль функции, а также сумму или разность нескольких модулей. С 17.04.21 до экзаменв просмотр по кнопке ОТКРЫТ. | ||||||||
Степенная | y = x 3 | Кубическая парабола | Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе «Движение графиков функций». | |||||
Степенная | y = x 1/2 | График функции y = √x | Самый простой случай для дробной степени (x 1/2 = √x). Случаи с коэффициентами изучаются в разделе «Движение графиков функций». | |||||
Показательная | y = a x | График показательной функции | Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5 x (a = 1/2 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1). | |||||
Логарифмическая | y = logax | График логарифмической функции | Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2 На сервере youtube.com открыт канал Mathematichka, на котором размещаются видео, связанные с изучением графиков функций и экзаменационными задачами на эту тему. Подписывайтесь и пишите в комментариях свои вопросы и пожелания. Пример такого видео. | |||||
Перейти на главную страницу. | ||||||||
Название функции | Формула функции | График функции | Название графика |
---|---|---|---|
|
y наим = 0, у наиб не существует
6) E(f) = [0; +∞)
Если k 0, и вниз, если а 0
3) Ограничена снизу, не ограничена сверху
4) y наим = 0, у наиб не существует
Если а > 0
1)
|
Функция обратной пропорциональности y =
График функции – гипербола.
Свойства функции y =
1) D(f) = (-∞; 0) (0; +∞)
2) Если k > 0, то функция убывает на промежутке (-∞; 0) (0; +∞)
detector