Как называются желтые пластиды

woman 1784755 1920 Советы на день

Биология. 11 класс

§ 13-1. Двумембранные органоиды

Двумембранными органоидами клеток являются митохондрии и пластиды.

Митохондрии — органоиды, в которых протекает кислородный этап клеточного дыхания (этот процесс будет подробно рассмотрен в следующей главе). В ходе кислородного этапа с участием О2 происходит расщепление и окисление органических соединений до неорганических веществ. При этом выделяется много энергии, которая используется для синтеза большого количества АТФ. Поэтому митохондрии иногда называют «энергетическими станциями» клетки.

Митохондрии являются динамичными органоидами. Они способны изменять свою форму, сливаться друг с другом, делиться, перемещаться в участки клетки с повышенным потреблением энергии. Митохондрии скапливаются преимущественно в тех частях клетки, где выше потребность в АТФ, например вблизи органоидов движения или миофибрилл.*

13 1.1Каждая митохондрия ограничена двумя мембранами — наружной и внутренней, между которыми находится межмембранное пространство (рис. 13-1.1). Наружная мембрана митохондрии гладкая, не образует впячиваний и складок. Она отделяет органоид от гиалоплазмы и обладает высокой проницаемостью для ионов и небольших молекул. Внутренняя мембрана характеризуется гораздо меньшей проницаемостью. Она образует многочисленные складки — кристы, которые значительно увеличивают площадь ее поверхности. Внутренняя мембрана митохондрий содержит большое количество белков. В ее состав входят, например, ферменты, обеспечивающие синтез АТФ.

Содержимое митохондрии, ограниченное внутренней мембраной, называется матриксом. В матриксе содержатся различные неорганические и органические вещества, в том числе разнообразные ферменты, а также кольцевые молекулы ДНК и все виды РНК. Следовательно, митохондрии содержат собственную генетическую информацию. В их матриксе также находятся рибосомы, в которых осуществляется реализация этой информации, т. е. синтез белков. Митохондриальные *70S* рибосомы меньше по размерам, чем рибосомы, содержащиеся в гиалоплазме клетки. *ДНК митохондрии кодирует лишь небольшую часть белков, необходимых для функционирования этого органоида. Большинство митохондриальных белков кодируется ДНК, расположенной в ядре клетки. Такие белки синтезируются в 80S рибосомах в гиалоплазме, а затем транспортируются в митохондрию.*

Главная функция митохондрий — обеспечение клетки энергией в виде АТФ. *В клетке происходит постоянное обновление митохондрий. Новые митохондрии образуются в результате деления материнских. Этот процесс, как правило, протекает независимо от деления клетки и определяется ее энергетическими потребностями. Когда потребности клетки в энергии высоки, митохондрии интенсивно растут и размножаются путем деления. Если потребление энергии низкое, часть митохондрий может разрушаться или переходить в неактивное состояние.*

Источник

Пластиды: виды, строение и функции. Хлоропласты, хромопласты, лейкопласты

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

vidi plastid

Строение и функции хлоропластов

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

hloroplast Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

hloro gemo Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

hromoplast Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

leykoplast Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Источник

Пластиды: от растений до морских слизней и мозговых паразитов

Каждый из нас знает о хлоропластах со школьных времен – эти структуры в клетках растений ответственны за зеленый цвет нашей планеты и возможность дышать кислородом. Однако не всем известно, что хлоропласты – это лишь одна из разновидностей пластид, возможно, самая «скучная». Когда-то все пластиды были свободноживущими организмами, которые оказались запертыми внутри чужих клеток. Это стало началом запутанной истории их эволюции, которая длится уже миллиарды лет и временами порождает организмы, в существование которых сложно поверить

В клетках животных и растений, а также некоторых одноклеточных имеются свои внутренние «органы», как и в теле человека. Эти специализированные структуры – клеточные органеллы – отделены от основной части клетки и выполняют определенную функцию.

Самой важной органеллой в клетке, конечно же, является ядро, которое содержит хромосомы с закодированной в них генетической информацией. Именно наличие ядра является основной характеристикой, отличающей сложноорганизованные эукариотические организмы от примитивных прокариотических, у которых нет ядра и других органелл (типичные представители – ​бактерии).

Ядро контролирует все, что происходит в клетке, однако бывают и исключения. Существуют клеточные органеллы, которые имеют большой уровень самостоятельности и не во всем подчиняются ядру. Такие органеллы называются полуавтономными, и к ним относятся пластиды. В некоторых отношениях пластиды ведут себя как отдельные независимые организмы – ​у них есть свои собственные хромосомы и свой аппарат белкового синтеза.

2ba77b772995e096de94788954c18642

Наиболее распространенным видом пластид являются хлоропласты, содержащие зеленый пигмент хлорофилл. Они ответственны за фотосинтез – ​процесс преобразования солнечного света в энергию химических связей органического вещества, который является основным источником энергии для всего живого на нашей планете.

Помимо хлоропластов существует огромное разнообразие пластид. В зависимости от функций и содержащихся в них пигментов пластиды могут быть желтыми или красными, голубыми или бесцветными и даже черными. Только в привычных для нас наземных растениях выделяют не менее девяти разновидностей пластид, и куда большее их число встречается у других организмов. При этом пластиды могут сильно отличаться друг от друга по своей структуре и сложности. Так, некоторые из них, в отличие от хлоропластов, окружены не двумя, а тремя и более мембранами, другие могут иметь собственное ядро. А в некоторых случаях пластиды даже могут превращаться в глаза.

Причины такого разнообразия пластид, а также их полуавтономного статуса в клетке нужно искать в далеком прошлом – ​на заре развития живого мира.

Счастливый союз

Когда-то очень давно предки пластид были самостоятельными свободноживущими организмами. Они относились к прокариотам, походили на современных цианобактерий, которые способны к фотосинтезу и встречаются повсеместно, и имели строение, типичное для бактерий. У них не было не только оформленного ядра, но и других органелл, таких как митохондрии (клеточные энергоустановки). Их генетический материал был представлен кольцевой хромосомой, которая просто плавала внутри клетки. Тем не менее эти организмы были способны к фотосинтезу, хотя по эффективности уступали современным растениям. Это, кстати говоря, не помешало им устроить кислородную катастрофу – ​глобальное изменение состава атмосферы Земли, произошедшее в самом начале протерозоя, т. е. около 2,5 млрд лет назад. Результатом этого события стало появление в составе атмосферы свободного кислорода, что вызвало значительный эволюционный скачок в развитии живого мира нашей планеты.

Другими словами, предки пластид изменили правила игры на доисторической Земле и подготовили ее к появлению более сложных форм жизни. А современные цианобактерии, по своей организации не слишком от них отличающиеся, до сих пор успешно соревнуются с эволюционно продвинутыми растениями, производя до 40 % всего выделяемого в атмосферу кислорода.

КРАСНЫЕ, СИНИЕ, ЧЕРНЫЕ Своим ярким цветом знакомые всем морковь и помидоры обязаны особой разновидности пластид – ​хромопластам, которые содержат желтые, оранжевые и красные пигменты каротиноиды. В свою очередь у красных водорослей в пластидах накапливаются красные пигменты фикобилины, которые маскируют хлорофилл и наряду с ним участвуют в фотосинтезе. Можно представить, что если бы в ходе эволюции наземные растения пошли по пути красных водорослей, то Земля была бы покрыта «марсианскими» лесами всех оттенков красного цвета. А вот если бы деревья и травы последовали примеру глаукофитовых водорослей, окружающие нас пространства были бы «раскрашены» синим и голубым, благодаря пигментам фикоцианину и аллофикоцианину.
4d8257c00d88f05bbb256776d0bc0f83
А можете ли вы представить леса черного цвета? Удивительно, но в принципе такое возможно: черные пластиды были открыты в 2020 г. специалистами новосибирского Института цитологии и генетики СО РАН в зернах одной из разновидностей ячменя. Эти пластиды накапливают меланин – ​тот самый пигмент, который делает кожу смуглой, а волосы темными и защищает нас от ультрафиолетового излучения. Оказалось, что у растений тоже есть меланин, и за его образование и накопление ответственны особые пластиды – ​меланопласты (Shoeva et al., 2020). Черные пластиды помимо меланина содержат хлорофилл (его зеленый цвет маскируется черным пигментом) и способны к фотосинтезу, так что полностью черные растения теоретически могли бы существовать, хотя в реальности этот пигмент накапливается только в отдельных частях растений.
a675dfa4997e1903756d61cc86c92a74
Что до бесцветных пластид, то у них нет пигментов для фотосинтеза, однако их функции не менее важны – ​это синтез и накопление различных веществ. Например, крахмала, как это делают амилопласты растений

Самостоятельная жизнь предков пластид продолжалась до тех пор, пока приблизительно 2 млрд лет назад они не были поглощены хищной эукариотической клеткой. По каким-то причинам она не стала переваривать пойманных бактерий – ​так наши предки пластид оказались заточенными внутри другой клетки, не утратив при этом способность к фотосинтезу. В итоге выиграли все: поглощенные предки пластид получили надежную защиту, а хищник – ​новый, практически не ограниченный источник энергии. Это оказалось мощным эволюционным преимуществом для всех участников, так что, пожертвовав независимостью, они начали вести новую совместную жизнь.

f9c3e1553d5ee374bb115d1d6466541a

3d07028cf9e0ff8eb8dd66f80202beea

Явление, когда один организм живет внутри другого и оба получают выгоду от сожительства, называется эндосимбиозом. И наш случай, кстати сказать, не уникальный. Таким же образом миллиарды лет назад произошли и митохондрии, которые есть и в человеческих клетках. Предками митохондрий были дальние родственники современных риккетсий, к которым относятся такие бактерии, как возбудители сыпного тифа и клещевых риккетсиозов.

Конечно, эндосимбионты не сразу превращаются в клеточные органеллы – ​для этого требуются миллионы лет. Современные цианобактерии, к примеру, продолжают селиться в клетках водорослей, папоротников и губок, как и предки пластид. Однако на этом этапе своей эволюции они легко могут отделиться и вновь начать жить самостоятельно.

fe0f1bcbd1c141fd7869a80d100d60a7

87daa55a194562057f4666176e139ab7

Один из самых впечатляющих примеров эндосимбиоза – ​одноклеточный организм Mixotricha paradoxa, который сам является симбионтом термитов и живет в их кишечнике, помогая переваривать целлюлозу. Mixotricha не имеет пластид или митохондрий, однако является домом сразу для четырех видов эндосимбиотических бактерий. Эти бактерии вырабатывают энергию и помогают переваривать пищу, а жгутиконосные бактерии (родственники бледной трепонемы – ​возбудителя сифилиса) помогают Mixotricha передвигаться (Wenzel et al., 2003)

Но чем дольше продолжается совместное сожительство, тем больше каждый из организмов приспосабливается друг к другу и тем сложнее им пуститься в «одиночное плавание». Пластиды наземных растений, как и митохондрии человека, уже нельзя отделить от клеток, в которых они обитают, – ​оба компаньона по отдельности не выживут. Основным свидетельством утраты самостоятельности является тот факт, что, хотя пластиды и сохранили собственные кольцевые хромосомы, большая часть генов была перенесена с этих хромосом на хромосомы клетки-хозяина, которые располагаются в его ядре.

Так возникли первые клетки, содержащие пластиды, и это событие получило название первичного эндосимбиоза. Среди них были зеленые водоросли (предки наземных растений), красные водоросли и глаукофиты. Однако история пластид на этом далеко не закончилась: за первичным эндосимбиозом последовал новый этап эволюции – ​вторичный эндосимбиоз.

От партнерства – ​к рабству

Красные водоросли, получившие свои пластиды в результате первичного эндосимбиоза, решили не останавливаться на достигнутом и поучаствовали в эндосимбиозе еще несколько раз. Вот только роль у них поменялась. По уже описанной схеме они были поглощены другими хищными одноклеточными эукариотами и сами превратились в эндосимбионтов, сохранив при этом пластиды, полученные ранее.

aff69b935144cc19c2993e21a5815f58

Однако превращение красных водорослей в новые клеточные органеллы было не таким простым, как раньше, – ​они, как и хищная клетка, их поглотившая, относились к сложным эукариотическим организмам, пусть и одноклеточным. Поэтому получившейся клетке пришлось решать сложные проблемы, чтобы не только сохранить, но и эффективно использовать новые органеллы.

Во-первых, в этой клетке оказалось сразу два ядра из разных организмов (не считая отдельного генома пластид в самой глубине этой «матрешки»). Поэтому новые хозяева в ходе эволюции пытались избавиться от одного из ядер, но не у всех это получилось. Пример – ​криптофиты, одноклеточные фотосинтезирующие эукариоты, всего около 165 видов. У них есть свое ядро и митохондрии, пластиды, а также редуцированное ядро бывшей красной водоросли – ​настоящее эукариотическое, но в миниатюре. Такое мини-ядро (нуклеоморф) имеет несколько механизмов защиты, не позволяющих клетке-хозяину от него избавиться.

7adf40becb7a5c28c3dd0037e3b5ff6a

Во-вторых, существенная проблема «матрешки», образовавшейся в результате вторичного эндосимбиоза, – ​изолированность от цитоплазмы пластид, окруженных сразу четырьмя мембранами (две мембраны достались от первичной пластиды, плюс мембрана, окружавшая клетку первого хозяина, и, наконец, мембрана пищеварительной вакуоли второго хозяина), что очень мешает прямому взаимодействию. Для эффективного фотосинтеза и контроля над своим приобретением новым хозяевам пришлось изобрести и новый способ молекулярного транспорта.

647c82e38f437821bd87073ec68ac59f

Ядро бывшей красной водоросли, доставшееся криптофитам вместе с пластидами (нуклеоморф), устроено чрезвычайно интересно. Это самое маленькое клеточное ядро из всех эукариотических, известных на сегодня: в нем всего три хромосомы, а большая часть генов «переехала» на местожительство в ядро нового хозяина. Гены, оставшиеся в нуклеоморфе криптофитов, очень редко мутируют, к тому же у них есть механизмы, не позволяющие перенести их в хозяйское ядро без утраты работоспособности. Благодаря таким уловкам ядро красной водоросли продолжает существовать, несмотря на то, что новый хозяин всеми силами пытается от него избавиться

Так появились особые поровые белки, встроенные в мембраны, – ​настоящие «ворота», через которые в двух направлениях идет транспортный поток. При этом у белков-переносчиков имеется специальный ключ – ​короткая аминокислотная последовательность на конце молекулы, которая отщепляется после перехода через мембрану. И для каждой из четырех мембран нужен свой «ключ».

Таким образом, некогда свободноживущие предки пластид, «решившие» взаимовыгодно и на условиях равноправия жить внутри другой клетки, в результате вторичного эндосимбиоза оказались в подчиненном положении и полностью утратили «право голоса». Новый хозяин может делать с ними все, что ему вздумается, в чем можно убедиться на нижеследующих примерах.

На службе у паразитов

Вторичный эндосимбиоз породил большое число удивительных видов, включая пользующихся дурной славой апикомплексов – ​группу паразитических организмов, к которым относятся возбудители опасных заболеваний человека и животных, таких как малярия и токсоплазмоз.

Малярийный плазмодий не нуждается в представлении. Именно эти эукариотические одноклеточные превращают комаров в самых смертоносных животных на планете, убивая сотни тысяч человек ежегодно.

b400f699928a31e442f7f8b372185e4b

Другой представитель апикомплексов – ​токсоплазма – ​менее известна широкой публике, что не делает ее менее опасной. У взрослых людей вызываемое токсоплазмой заболевание – ​токсоплазмоз – имеет хроническое бессимптомное течение и угрожает летальным исходом лишь больным с иммунодефицитом. По-настоящему болезнь опасна во время беременности, поскольку паразит легко может проходить через плаценту, поражая развивающийся плод, что приводит к порокам развития и даже гибели эмбриона. И все же для подавляющего большинства людей заражение токсоплазмой не является смертным приговором: самая большая неприятность в том, что, однажды заразившись токсоплазмой, избавиться от нее уже невозможно.

С точки зрения эволюции эти организмы интересны тем, что они также имеют пластиды, хоть они и изменились до неузнаваемости. Их пластиды превратились в апикопласты – ​разновидности, окруженные четырехслойной мембраной и полностью утратившие все фотосинтезирующие пигменты. Да и зачем пара­зитам фотосинтез, если у них нет доступа к свету, зато есть неограниченный источник питательных веществ в виде тканей хозяина?

Несмотря на то, что пластиды утратили свою первоначальную функцию фотосинтеза, избавляться от них паразиты не стали: эти органеллы играют у них жизненно важную роль в метаболизме жиров. Апикопласты, как и другие пластиды, по-прежнему имеют свой собственный геном в виде кольцевой хромосомы, хотя и значительно усеченный (он кодирует всего несколько белков) (McFadden, Yeh, 2017).

Тот факт, что у паразитов есть пластиды, которые выполняют жизненно важные функции, может стать их «ахиллесовой пятой» при разработке лекарств, так как у человека и животных пластид нет. Так что можно создать лекарства, направленные только на пластиды, которые будут и эффективными, и безопасными.

От глазастой клетки – ​к клеточным пиратам

Если апикомплексы показались вам самыми удивительными организмами с пластидами – ​самое время познакомиться с динофлагеллятами! Этих одноклеточных организмов насчитывается несколько тысяч видов, и в своих экспериментах с пластидами они зашли дальше всех.

Широкой публике динофлагелляты известны тем, что они вызывают «свечение» (биолюминесценцию) морской воды, а также «красные приливы», когда морская вода окрашивается в красно-коричневый цвет, а все живое в ней погибает, включая рыб, птиц и морских млекопитающих. Причиной этих феноменов служит бурное размножение динофлагеллят, которые в случае «красных приливов» тратят весь содержащийся в воде кислород и выделяют опасные нейротоксины.

00cc7efeafa950d17e99ab82ae6ee91b

Динофлагелляты также получили свои пластиды в ходе вторичного эндосимбиоза, поглотив красные водоросли, однако их дальнейшая эволюция была удивительно бурной и разнонаправленной. Глядя на все разнообразие пластид динофлагеллят, возникает ощущение, что они никак не могут определиться: быть им фотосинтезирующими организмами, хищниками или паразитами.

ОДНОКЛЕТОЧНЫЙ КУКЛОВОД Заражая человека, токсоплазма внедряется в мышцы, сердце, глаза и, в первую очередь, головной мозг, образуя там цисту – ​покоящуюся форму, окруженную плотной защитной оболочкой. Цисты могут сохраняться в теле хозяина на протяжении всей его жизни. Такое поведение может показаться нелогичным, ведь главная цель любого паразита – размножаться, максимально используя ресурсы хозяина.
95e8407fbaef07d2095dee86ec3af7b9Но дело в том, что конечный хозяин токсоплазмы – ​вовсе не человек. В своем сложном жизненном цикле паразит меняет нескольких хозяев и, в конечном итоге, мечтает быть съеденным хищником из семейства кошачьих, поскольку только в его кишечнике токсоплазма может размножаться половым путем. Изначально промежуточным хозяином для паразита служили преимущественно грызуны. Токсоплазма попадала в мозг мышей и крыс, тех съедали кошки, в результате чего паразит оказывался в их кишечнике и производил огромное количество яиц. Последние вместе с фекалиями попадали в окружающую среду, где у них был шанс вновь заразить грызуна. Но так было до появления цивилизации.
Благодаря одомашниванию кошек число яиц паразита в окружающей среде резко выросло, а поскольку у токсоплазмы отсутствует специфичность в выборе промежуточного хозяина (главное, чтобы он был теплокровным), началось массовое заражение этим паразитом неспецифических хозяев – ​разных видов животных, людей и даже птиц. Считается, что сегодня этим паразитом заражено более 60 % человечества. Правда, с нами токсоплазме не слишком повезло, так как у наших питомцев практически нет шанса полакомиться человеческим мозгом. Попав туда, паразит оказывается в ловушке.
Помимо человека, токсоплазма представляет большую проблему и для морских млекопитающих, так как большое количество яиц паразита попадает в океан со сточными водами. Предполагается даже, что именно заражение токсоплазмой может быть причиной того, что киты и дельфины выбрасываются на берег (Díaz-Delgado et al., 2020).
Тот факт, что у большинства из нас в мозгу находятся цисты паразита, мягко говоря, неприятен. Но на этом плохие новости не заканчиваются. Установлено, что, хотя цисты токсоплазмы не движутся и не растут, они способны выделять химические вещества, влияющие на работу мозга и поведение хозяина. Так, грызуны, зараженные токсоплазмой, перестают бояться кошек и становятся легкой добычей хищника.
ed46e135dcbb47538ef8e9bcc19d5eaf
Что касается человека, то у зараженных людей отмечена повышенная склонность к риску и снижение скорости реакции. Предполагается, что такие люди чаще страдают неврозами и попадают в автомобильные аварии. Однако есть и позитивный момент в этой истории: токсоплазма может помочь в лечении разнообразных заболеваний мозга. Так, было установлено, что грызуны, зараженные токсоплазмой, легче переносят инсульты, у них реже развивается болезнь Альцгеймера (Martinez et al., 2018; Johnson, Koshy, 2020).
Что касается наших домашних хищников, то есть мнение, что популярность кошек в современном обществе является следствием высокой инфицированности токсоплазмой, которой не терпится, чтобы ваша кошка вас съела. Другими словами, именно токсоплазма заставляет нас любить котов и желать контакта с ними. И хотя выводы о влиянии токсоплазмы на поведение человека делаются лишь на основании косвенных данных (поскольку эксперименты по принудительному заражению людей мозговым паразитом, мягко говоря, неэтичны), не стоит относиться к ним легкомысленно. Поэтому когда в следующий раз захотите поцеловать своего кота – ​позаботьтесь сначала о том, чтобы протестировать его на токсоплазмоз

У тех динофлагеллят, которые «по старинке» используют пластиды для фотосинтеза, эти органеллы окружены тройной мембраной, а нуклеоморф от первого хозяина не сохранился. При этом геном этих пластид устроен уникальным образом. Вместо типичной кольцевой хромосомы, которая несет все гены сразу, они имеют сотни отдельных кольцевых мини-хромосом, каждая из которых содержит только один ген. Зато все эти мини-хромосомы представлены во множестве (до 500 штук) копий (Zhang et al., 2002). Зачем это нужно – ​загадка.

7f040eb9d9c65e536045b658142a613aА у динофлагеллят из семейства Warnowiaceae пластиды превратились в глаза, точнее, в часть глаза. И вполне полноценного, по устройству соответствующему глазу животных. Но так как сам организм одноклеточный, «роговица» сформирована большим количеством митохондрий, связанных в единую систему, «хрусталик» – ​мембранами внутриклеточной транспортной системы, а пластиды стали играть роль светочувствительной «сетчатки» (Hayakawa et al., 2015). Глаз внутри клетки, названный оцелоидом, позволяет динофлагеллятам, как минимум, оценивать уровень освещенности окружающей среды.

С другой стороны, многие динофлагелляты не нашли применение пластидам и полностью утратили их. Но некоторые из них затем «одумались» и решили завести пластиды повторно, воруя их у других организмов (это явление называется клептопластией). Для этого они пошли по проторенному пути: поедая других одноклеточных, у которых есть пластиды, они переваривают все, кроме пластид. Какое-то время (дни и даже месяцы) украденные пластиды выполняют свои фотосинтетические функции, питая нового хозяина, но рано или поздно также перевариваются. Затем процесс повторяется.

Некоторые динофлагелляты даже умудряются воровать у вора. Так, динофлагеллят Dinophysis acuminata поедает инфузорию Myrionecta rubra и забирает себе ее пластиды, при этом сама инфузория ранее украла эти пластиды у криптофита Teleaulax amphioxeia (Minnhagen et al., 2011). Ну а криптофиту эти пластиды достались в ходе вторичного эндосимбиоза от красных водорослей, которые когда-то поглотили свободноживущих предков пластид. Вот такие «пироги»… с пластидами.

Клептопластия (кража пластид у других организмов для использования в своих целях) распространена в природе довольно широко и обнаружена даже у многоклеточных организмов. Яркий пример – ​морские слизни. Эти моллюски захватывают хлоропласты водорослей, которыми питаются, и сохраняют их в специальном органе (Marie et al., 2017). Там хлоропласты живут и активно фотосинтезируют – ​благодаря такому дополнительному источнику энергии слизни могут жить без еды до года! Украденные хлоропласты не сохраняются внутри моллюска всю его жизнь, но им на смену постоянно приходят новые

Но динофлагелляты не были бы динофлагеллятами, если бы остановились только на краже чужих пластид. Оказалось, что эти клеточные пираты могут красть митохондрии и даже ядра из клеток других видов (Yamada et al., 2019). Так поступают представители группы динотомов в отношении диатомовых водорослей, причем иногда они могут красть органеллы сразу у нескольких видов.

В некоторых случаях краденые органеллы остаются лишь до следующего деления клетки-хозяина, но у отдельных видов они начинают жить внутри нового хозяина как ни в чем не бывало. В последнем случае грань между клептопластией и третичным(!) эндосимбиозом становится очень тонкой. Вполне вероятно, что через парочку миллионов лет они станут неразлучны, открыв новую страницу в эволюции динофлагеллят.

Таким образом, существование всего разнообразия современных пластид является следствием одного акта первичного эндосимбиоза, произошедшего миллиарды лет назад.

7e9c9eb81f0f11a85af0f2e1ba5eb9e9

Однако предки пластид вряд ли могли представить, какая судьба их ожидает, когда соглашались на взаимовыгодное сожительство со своим первым хозяином, и как глубоко в конце концов они окажутся внутри этой клеточной «матрешки». Важен итог: некогда свободноживущие организмы стали неотъемлемым компонентом одноклеточных животных, водорослей и наземных растений, радикально изменив облик нашей планеты.

И конца этой драматичной истории приобретений, изменений, потерь и краж пластид не предвидится. Нам неизвестно, сколько еще актов эндосимбиоза с участием пластид может произойти, но можно быть уверенными – ​их эволюция не закончилась.

В заключение подчеркнем, что читателю была представлена лишь упрощенная версия эволюционной истории пластид, которая в реальности гораздо сложнее и запутаннее, и исследования в этой области постоянно добавляют к ней все новые и новые удивительные детали.

Hayakawa S., Takaku Y., Hwang J. S., et al. Function and Evolutionary Origin of Unicellular Camera-Type Eye Structure // PLoSONE. 2015. V. 10(3). P. e0118415.

Keeling P. J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany. 2004. V. 91(10). P. 1481–1493.

Marie E., Laetz J., Wägele H. Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysiatimida (Risso, 1818) as compared to short-term and non-chloroplast-retaining sacoglossan slugs // PLoS One. 2017. V. 12(10). P. e0182910.

McFadden G. I., Yeh E. The apicoplast: now you see it, now you don’t // Int. J. Parasitol. 2017. V. 47(2-3). P. 137–144.

Minnhagen S., Kim M., Salomon P. S., et al. Park Active uptake of kleptoplastids by Dinophysis caudata from its ciliate prey Myrionectarubra // Aquatic Microbial Ecology. 2011. V. 62(1). P. 99–108.

Shoeva O. Y., Mursalimov S. R., Gracheva N. V., et al. Melanin formation in barley grain occurs within plastids of pericarp and husk cells // Sci. Rep. 2020. V. 10. P. 179.

Wenzel M., Radek R., Brugerolle G., et al. Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis // European Journal of Protistology. 2003. V. 39. N. 1. P. 11–23.

Yamada N., Bolton J. J., Trobajo R., et al. Discovery of a kleptoplastic ‘dinotom’ dinoflagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids // Sci. Rep. 2019. V. 9. P. 10474.

Zhang Z., Cavalier-Smith T., Green B. R. Evolution of dinoflagellate unigenicminicircles and the partially concerted divergence of their putative replicon origins // Mol. Biol. Evol. 2002. V. 19(4). P. 489–500.

Источник

Оцените статью
Добавить комментарий

Adblock
detector