Межпланетная гравитация как чс

fashion 2309519 1920 Советы на день

Если гравитация это не сила, то как она «притягивает» объекты?

Считается, что гравитация ответственна за все происходящее в нашей Вселенной – от падения яблока на голову Исаака Ньютона, до вращения сверхмассивных черных дыр в центрах далеких галактик. Обычно мы представляем гравитацию как силу, которая притягивает вещи к массивным объектам. В некоторых учебниках по физике, особенно начальных классов, можно встретить утверждения о том, что «гравитация Земли притягивает объекты к центру планеты». Но так ли это? Исследователи полагают, что ключом к разгадке тайны гравитации является термин «ускорение», а не «тяга». Дело в том, что гравитация вообще не притягивает объекты; скорее, она искривляет пространство-время, заставляя объекты следовать за создаваемыми ей изгибами, в результате чего они иногда ускоряются. В этой статье разбираемся чем на самом деле является гравитация.

what is gravity

Мы воспринимаем гравитацию, как силу, которая «притягивает» к себе объекты. Но так ли это?

Ньютоновская гравитация

В 1665-1667 годах в Англии бушевала бубонная чума. В этот период молодой ученый по имени Исаак Ньютон вернулся из Кембриджского университета на свою семейную ферму в Вулсторпе. Время, проведенное в изоляции, позволило ему познать физическую природу света: Ньютон провел множество экспериментов и пришел к выводу, что свет можно рассматривать как поток частиц, которые исходят от некого источника и двигаются по прямой до ближайшего препятствия.

Такая модель света называется корпускулярной; она легла в основу классической физики, без которой современных достижений науки просто не существовало бы.

Считается, что примерно в это же время Ньютон стал автором своего наиболее известного открытия – Всемирного закона тяготения. Он совершил концептуальный прорыв признав два различных вида движения – равномерное и ускоряющееся.

isaac newton gravity

В усадьбе Вусторп Ньютон совершил свои величайшие открытия. Вот что самоизоляция с людьми делает!

Важно понимать, что для современников Ньютона гравитация была земной силой; она была ограничена объектами вблизи поверхности Земли. Но в семейном яблоневом саду Ньютон обнаружил, что гравитация – сила универсальная. Она простирается до самых планет, до Луны, звезд и дальше.

Сегодня, благодаря трудам еще одного великого ученого, мы знаем, что энергия буквально говорит пространству-времени, как изгибаться: согласно Общей теории относительности, сила тяжести возникает из-за искривления пространства и времени, а такие объекты, как Солнце и Земля, эту геометрию изменяют.

Гравитация Эйнштейна

Пытаясь разгадать величайшие тайны Вселенной Альберт Эйнштейн, которому на тот момент исполнилось 30 лет, понял, что пространство-время изгибает не сила, но масса. Изгибы, которые оставляют под собой массивные объекты, например Солнце, подсказывают энергии как двигаться.

Представить себе пространство-время можно в виде равномерно натянутой плотной ткани, в центр которой закинули бильярдный шар – точно так же, как изгибается ткань под давлением шара, изгибается и пространство-время под давлением массивных объектов.

gra vityy

Большой шар сильно искривляет пространство-время, заставляя меньший шар изменить свой курс и следовать за падением.

Вместо шара и ткани также можно представить себе автомобиль, который движется по извилистой дороге – когда автомобиль спускается с холма, то ускоряется. Массивные объекты во Вселенной подобны ускоряющемуся автомобилю – они создают экстремальные изгибы в пространстве-времени.

Интересно, что гравитация способна ускорять объекты, когда они входят (или приближаются) в глубокие гравитационные колодцы. Гравитационные колодцы – это концепция, согласно которой чем массивнее тело, тем глубже и больше порождаемый им гравитационный колодец.

Еще больше увлекательных статей о том, какие законы физикой управляют Вселенной и почему, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Гравитация и астероиды

Чтобы лучше понять, как работает гравитация и как она способна ускорять объекты, возьмем, к примеру, Землю и Луну. Земля – довольно массивный объект. По крайней мере, по сравнению с Луной. Это означает, что наша планета довольно сильно искривляет ткань пространства-времени.

Луна вращается вокруг нашей планеты из-за искривления пространства-времени, вызванного массой Земли. Выходит, она просто движется вдоль изгиба или нисходящего склона (в случае с автомобилем), который делает наша планета. В этом отношении на спутник Земли не действует какая-либо сила. Она просто следует определенному пути. Но почему в таком случае все астероиды и метеориты, пролетающие мимо нашей планеты, не попадают на орбиту?

sun earth

Солнце и Луна искривляют ткань пространства-времени.

Причина, как полагают исследователи, кроется в пути, который проходит объект – он зависит от ряда факторов, таких как скорость, траектория и масса соответствующих объектов. Именно по этой причине каждый день сотни астрономов по всему миру наблюдают множество комет и астероидов, пролетающих мимо Земли и не попадающих на ее орбиту.

А если вам интересно, смогут ли люди когда-нибудь изобрести искусственную гравитацию, обязательно прочтите статью моего коллеги Владимира Кузнецова. В ней он подробно рассказывает о последних достижениях в этой области и о том, перестанет ли в скором будущем искусственная гравитация считаться атрибутом исключительно научной фантастики.

Источник

Искусственная гравитация: от «Космической одиссеи» Кубрика до античастицы

Жизнь в космосе вредна для людей — и не только из-за высоких доз радиации, от которых астронавтов защищают скафандры и корпуса летательных аппаратов. Астронавты на МКС с трудом улыбаются в камеру и с еще большим трудом пытаются встать. Из-за микрогравитации на МКС астронавтам приходится долго адаптироваться к условиям на Земле: вплоть до того, что некоторые заново учатся ходить. Полеты на Марс в будущем же отразятся на вестибулярном аппарате еще сильнее. Основное решение этой проблемы — искусственная гравитация, концепции создания которых предлагаются учеными с середины прошлого века. «Хайтек» рассказывает, насколько осуществима идея создания космических станций и кораблей с искусственной гравитацией и какие проекты существуют на данный момент.

Читайте «Хайтек» в

Проблемы с вестибулярным аппаратом — не единственное последствие длительного пребывания в условиях микрогравитации. Астронавты, которые проводят на МКС больше месяца, часто страдают от нарушения сна, замедления работы сердечно-сосудистой системы и метеоризма.

Недавно НАСА завершило эксперимент, в ходе которого ученые сравнили геном братьев-близнецов: один из них провел на МКС почти год, другой совершал лишь кратковременные полеты и большую часть времени находился на Земле. Долговременное пребывание в космосе привело к тому, что 7% ДНК первого астронавта изменились навсегда — речь идет о генах, связанных с иммунной системой, формированием костной ткани, кислородным голоданием и избыточным количеством углекислого газа в организме.

dims

В условиях микрогравитации человек будет вынужден бездействовать: речь идет не о пребывании астронавтов на МКС, а о полетах в глубокий космос. Чтобы выяснить, как такой режим повлияет на здоровье астронавтов, Европейское космическое агентство (ESA) на 21 день положило 14 добровольцев в наклоненную в сторону головы кровать. Эксперимент, который позволит на практике проверить новейшие методы борьбы с невесомостью — такие как улучшенные режимы физических упражнений и питания — намерены совместно провести НАСА и Роскосмос.

Но в случае, если люди решат отправить корабли к Марсу или Венере, понадобятся более экстремальные решения — искусственная гравитация.

Как гравитация может существовать в космосе

Прежде всего стоит понять, что гравитация существует везде — в некоторых местах она слабее, в других сильнее. И космическое пространство не является исключением.

МКС и спутники находятся под постоянным влиянием гравитации: если объект находится на орбите, он, говоря упрощенно, падает вокруг Земли. Подобный эффект возникает, если бросить мяч вперед — прежде чем упасть на землю, он немного пролетит в направлении броска. Если бросить мяч сильнее, он пролетит дальше. Если вы супермен, а мяч — ракетный двигатель, он не упадет на землю, а облетит вокруг нее и продолжит вращаться, постепенно выходя на орбиту.

Микрогравитация предполагает, что люди внутри корабля не находятся в воздухе — они падают с корабля, а тот, в свою очередь, падает вокруг Земли.

Благодаря тому, что гравитация является силой притяжения между двумя массами, мы остаемся на поверхности Земли, когда идем по ней, а не уплываем в небо. В этом случае вся масса Земли притягивает массу наших тел к своему центру.

Когда корабли выходят на орбиту, они свободно плавают в космическом пространстве. Они по-прежнему подвержены гравитационному притяжению Земли, но корабль и находящиеся в нем предметы или пассажиры подвержены гравитации одинаково. Существующие аппараты недостаточно массивны, чтобы создать заметное притяжение, поэтому люди и предметы в нем не стоят на полу, а «плавают» в воздухе.

Как создать искусственную гравитацию

Искусственной гравитации как таковой не существует, чтобы ее создать, человеку необходимо узнать всё об естественной гравитации. В научной фантастике существует концепция имитации гравитации: она позволяет экипажу космических кораблей ходить по палубе, а предметам стоять на ней.

В теории существует два способа создать имитацию гравитации, и ни один из них пока не был использован в реальной жизни. Первый — это использование центростремительной силы для моделирования силы тяжести. Корабль или станция при этом должны представлять собой колесоподобную конструкцию, состоящую из нескольких постоянно вращающихся сегментов.

Согласно этой концепции, центростремительное ускорение аппарата, толкающее модули к центру, создаст подобие гравитации или условия, аналогичные земным. Эта концепция была продемонстрирована в «Космической одиссее 2001 года» Стенли Кубрика и в фильме «Интерстеллар» Кристофера Нолана.

149578194107665196

Автором этого проекта считается немецкий ученый-ракетчик и инженер Вернер фон Браун, который руководил разработкой ракеты «Сатурн-5», доставившей на Луну экипаж «Аполлон-11» и еще несколько пилотируемых аппаратов.

Будучи директором Центра космических полетов имени Маршалла НАСА, фон Браун популяризировал идею российского ученого Константина Циолковского о создании тороидальной космической станции на основе конструкции со ступицами, напоминающей велосипедное колесо. Если колесо вращается в пространстве, то инерция и центробежная сила могут создать своего рода искусственную гравитацию, которая тянет предметы к внешней окружности колеса. Это позволит людям и роботам ходить по полу, как на Земле, а не плавать в воздухе, как на МКС.

Однако у этого метода есть существенные недостатки: чем меньше космический корабль, тем быстрее он должен вращаться — это приведет к возникновению так называемой силы Корнолиса, при которой на точки, расположенные дальше от центра, сила тяжести будет влиять сильнее, чем на более близкие к нему. Другими словами, сила тяжести будет действовать на голову астронавтов сильнее, чем на ноги, что вряд ли им понравится.

Другой метод создания имитации гравитации более практичен, но также крайне дорог — речь идет о методе ускорения. Если корабль на определенном отрезке пути сначала будет разгоняться, а затем развернется и начнет тормозить, то возникнет эффект искусственной гравитации.

Для реализации этого метода потребуются колоссальные запасы топлива — дело в том, что двигатели должны работать почти непрерывно за исключением короткого перерыва в середине пути — во время разворота корабля.

Реальные примеры

Несмотря на высокую стоимость запуска аппаратов с имитацией гравитации, компании по всему миру пытаются построить такие корабли и станции.

Реализовать концепцию Фон Брауна пытается компания Gateway foundation — исследовательский фонд, который планирует построить вращающуюся станцию на орбите Земли. Предполагается, что по окружности колеса будут располагаться капсулы, которые смогут покупать государственные и частные аэрокосмические компании для проведения исследований. Некоторые капсулы будут проданы в качестве вилл самым богатым жителям Земли, а другие будут использоваться как отели для космических туристов.

Стыковочный отсек будет находится в центре станции — оттуда людей и грузы будут доставлять на лифтах в капсулы.

Способ привлечения денег компания выбрала неоднозначный: она намерена организовать лотерею, победители которой помимо денежного вознаграждения получат возможность бесплатно полететь на станцию и провести ночь в ее капсуле. Когда аппарат будет выведен на орбиту, в компании не раскрывают.

Над созданием аппарата с искусственной гравитацией для проведения долговременных космических исследований работала и НАСА. В 2011 году космическое агентство представило концепцию вращающегося космического корабля с надувными модулями Nautilus-X, который должен был снизить влияние микрогравитации на ученых, находящихся на его борту.

Вывод

Пока самый вероятный способ получить имитацию гравитации, которая защитит корабль от последствий ускорения и даст постоянное притяжение без необходимости постоянно использовать двигатели — это обнаружить частицу с отрицательной массой. Все частицы и античастицы, которые ученые когда-либо обнаружили, имеют положительную массу. Известно, что отричательная масса и гравитационная масса равны друг другу, однако пока исследователям не удавалось продемонстрировать это знание на практике.

Исследователи из эксперимента ALPHA в ЦЕРНе уже создали антиводород — стабильную форму нейтрального антивещества — и работает над его изоляцией от всех других частиц на очень низких скоростях. Если ученым удастся это сделать, вероятно, в ближайшее время искусственная гравитация станет реальнее, чем сейчас.

Источник

Гравицапа для межпланетных перелётов или гравитационный манёвр

image loader

Вопрос эмиграции в последние десятилетия стоит наиболее остро. И если 40 лет назад пределом мечтаний было перебраться за океан, то в XXI веке умами овладела мечта о релокейшне на Марс, например. Однако там тоже в скором времени может стать тесно. Остаётся одна дорога — колонизация Солнечной Системы и экзопланет. Допустим, мы собрались покинуть внутреннюю область Солнечной Системы, а, если повезёт, то и совсем выбраться за её пределы. Помимо невероятных объёмов тушёнки и кислорода, необходимых для выживания в суровом Космосе, нам потребуется в разы на порядки большее количество топлива, чтобы всё это добро дотащить. И ещё столько же топлива, чтобы тащить то топливо. И ещё топливо.

И самое обидное, что скорее всего мы закончим свой век среди троянских астероидов Юпитера, померев от тоски. Потому что топлива всё равно ни на что не хватит. Однако присмотримся к нашей Солнечной системе повнимательнее. Вот те же «троянцы и греки» — не просто так столпились в точках Лагранжа L4 и L5 Юпитера. Их туда «затолкала» гравитация планеты-гиганта, не потратив ни единой капли гидразина.

Давайте же и мы применим дармовую энергию Природы для достижения благородной цели доставки полезной нагрузки в далёкий космос.

image loader
Юпитер — оранжевый, «Троянцы» — зелёные за ним, «греки» — зелёные перед ним

Как это работает

Идея использования гравитации пролетающей мимо планеты довольно проста. Все что нужно — это наличие вблизи трассы полета небесного тела, обладающего достаточно сильной гравитацией и подходящими для целей миссии положением и скоростью. Космический аппарат, попав в поле тяготения планеты обязательно изменит свою скорость. Здесь внимательный читатель может заметить, что аппарат, ускорившись гравитацией планеты, ею же и тормозится после сближения с небесным телом и что в результате никакого ускорения не будет. Действительно, скорость относительно планеты, используемой в качестве «гравитационной пращи», не изменится по модулю. Но она поменяет направление! А в гелиоцентрической (связанной с Солнцем) системе отсчета окажется, что скорость меняется не только по направлению, но и по величине, поскольку складывается из скорости аппарата относительно планеты и, по крайней мере частично, скорости самой планеты относительно Солнца. Бинго! Планеты будут «брать на буксир» наших путешественников.

Подобным способом можно без затрат топлива изменить кинетическую энергию межпланетной станции. При полетах к дальним, внешним, планетам Солнечной системы гравитационный манёвр используется для разгона (для этого траектория корабля должна пролегать «за» планетой, или как говорят, с внешней стороны орбиты):

image loader

… а при миссиях к внутренним планетам — напротив, для гашения гелиоцентрической скорости (тут, соответственно, пролетаем «перед» планетой):

image loader

Упрощая, можно сказать, что сближение аппарата с планетой с внутренней стороны ее орбиты приводит к тому, что аппарат отдает планете часть своего углового момента и замедляется; и наоборот, сближение с внешней стороны орбиты приводит к увеличению момента и скорости аппарата. Интересно, что никакими акселерометрами на борту зарегистрировать изменение скорости аппарата в маневрах невозможно, — они постоянно регистрируют состояние невесомости. Сила притяжения планеты уравновешивает центробежную силу, когда мы закладываем такой поворот.

Причём экономия топлива, достигаемая использованием волшебной силы гравитации колоссальная. Первая космическая скорость — 8 км/с обеспечивает нам вращение вокруг Земли. Для перехода на более высокую орбиту скорость надо увеличивать, и каждые 3 км/с дополнительного разгона втрое увеличивают стартовую массу космической ракеты. Чтобы с низкой околоземной орбиты (скорость 8 км/с) отправиться на марсианскую по эллиптической («гомановской») траектории, надо набрать около 3,5 км/с, к Юпитеру — 6 км/с, к Плутону — 8—9 км/с. Таким образом полезная нагрузка при полете к дальним планетам составляет лишь несколько процентов от выведенной на орбиту массы, а та, в свою очередь, лишь несколько процентов стартовой массы ракеты. А вот какой максимальный прирост скорости может дать нам гравитация планет:

Меркурий: 3,005 км/с
Венера: 7,328 км/с
Земля (надо же): 7,910 км/с
Луна (тоже мне планета): 1,680 км/с
Марс: 3,555 км/с
Юпитер: 42,73 км/с
Сатурн: 25,62 км/с
Уран: 15,18 км/с
Нептун: 16,73
Плутон (уже не планета, но всё же): 1,09

Если присмотреться, данные теоретические пределы приращения скорости примерно равны первой космической скорости для этих планет. При этом ваш трактор космический аппарат отклонится на 60 градусов от первоначальной траектории.

Может показаться, что топливо при подобных путешествиях вообще не нужно, но это, разумеется, не так. Во-первых, до ближайшего гравитирующего тела надо ещё долететь. Причём желательно долететь до Юпитера. Впрочем, для полётов к Юпитеру есть свои лайфхаки, о которых ниже. Во-вторых, далеко не всегда направление полёта после ускорения планетой нас устраивает, поэтому траекторию нужно корректирвать двигателями. Кстати это делать лучше в моменты, когда скорость минимальна — то есть ещё до входа в вираж, предварительно просчитав конус траекторий наперёд. Ну и в-третьих, в момент максимального действия гравитационной пращи, находясь в ближайшей окрестности планеты и обладая пиковой скоростью хорошо бы как следует подработать маршевым двигателем. При движении с высокой скоростью топливо имеет больше энергии, доступной для использования за счёт эффекта Оберта (причём при скорости, превышающей половину скорости реактивной струи, полученная кинетическая энергия может превысить потенциальную химическую энергию сгораемого топлива — радуйтесь, торсионщики!)

Хватит болтать — в дорогу!

14e81c2caffa45b7a9c7d9ade64c077f

Ракета с модулем Пионер 10 стартовала 3 марта 1972 года с базы ВВС США на мысе Канаверал носителем Атлас-Центавр. Гравитационный маневр вокруг Юпитера позволил станции превысить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему. Пересечь орбиту Сатурна «Пионер-10» смог к февралю 1976 года, в июле 1979 года оказался за орбитой Урана, в 1983 году первым в истории пересек орбиту Нептуна. Последние данные от станции получены 23 января 2003 года, после чего «Пионер-10» прекратил свою работу. Сейчас аппарат находится на расстоянии 120 астрономических единиц от Солнца и через пару миллионов лет наконец-то приблизится к звезде Альдебаран.

Однако первый гравитационный манёвр совершила советская станция Луна-3 в 1959 году для того, чтобы вернуться обратно. Ну ладно, такой себе вираж, — зато это был манёвр с изменением плоскости траектории полёта. Подобные полёты и сегодня совершаются только при помощи гравитационной пращи. Например, аппарат для исследования полярных областей Солнца «Улисс» был вынужден «давать крюк» мимо Юпитера. Стартовав в 1990, он в 1992 году подлетел к газовому гиганту на расстояние 6 его радиусов и в 1994 году уже созерцал южный полюс Солнца с безопасного расстояния. Тут можете посмотреть на анимацию его полёта (гифка 3 мегабайта).

Американский Маринер 10 в 1974 году, наоборот, совершал торможение «об Венеру» для последующих сближений с Меркурием (весьма и весьма точных — 705 и 318 км!). Этот же метод используется и по сей день для исследования Меркурия — например, в миссиях «MESSENGER» и «БепиКоломбо». Тут я положил ссылочку на 8-мегабайтную гифку с анимацией движения последнего модуля за период 2019-2025 годы.

Если до соседней планеты лететь далеко и топлива жалко, можно сделать вот такой финт:

image loader

Аппарат миссии Юнона, взлетел с Земли, но с орбиты не сошёл, а произвёл гравитационный манёвр так же с Землёй, после чего направился на орбиту Юпитера. Таким же макаром разгонялся «Galileo Orbiter». Сначала аппарат направился к Венере, мимо которой прошел в феврале 1990 г. Затем по новой траектории в декабре он вернулся к Земле. Были переданы многочисленные фотографии Венеры, Земли и Луны, а наш герой понёсся далее.

vut6oabs fu zy7x5pdznkhu gc
7 декабря 1995-го исследовательский аппарат «Галилео» прибыл к Юпитеру и направил к нему исследовательский зонд (синие точки)

Про миссию Кассини-Гюйгенс, посадившую спускаемый аппарат на поверхность спутника Сатурна — Титана, говорить можно не один день. Шутка-ли — 20 лет работы на различных орбитах. Эти 20 лет стали возможны в том числе и благодаря максимально возможному использованию гравитации планет Солнечной Системы для экономии топлива.

image loader

Помимо плотной серии пиков в конце графика (когда аппарат вышел на орбиту Сатурна, и начал вращаться на его орбите) отчётливо видны моменты встреч с планетами (во время которых у аппарата прибавляется скорость), плавное снижение скорости (когда аппарат летел на встречу Сатурну, выбираясь из «гравитационной ямы» Солнца) с небольшим изломом у Юпитера.

image loader

Легендарный Кассини в общей сложности сделал 293 оборота вокруг Сатурна, среди которых выполнил 162 прохода вблизи его спутников и открыл 7 новых из них.

Разумеется, для выполнения гравитационных маневров дата старта должна быть выдержана весьма точно. Баллистики оперируют понятием «окно запуска» — это интервал дат, в пределах которого эффективность запланированных гравитационных маневров максимальна. Ближе к краям «окна» эффект становится меньше, а потребности в топливе — больше. Если же выйти за его границы, то носитель просто не сможет вывести аппарат на нужную орбиту, что приведет к срыву полета или недопустимому возрастанию его длительности. Например, запуск «Новых горизонтов», добывших нам такие милые фотографии Плутона, неоднократно переносился по погодным и техническим причинам. Задержись старт еще на несколько дней, и зонд отправился бы в полет уже без расчета на «гравитационную помощь» Юпитера и с меньшими шансами на успех.


Прибавка к скорости в 4 км/с позволила добраться до Плутона прежде чем на нём начала замерзать атмосфера (так как планетоид сейчас удаляется от Солнца). Поэтому он тут такой красивый.

«Лестница Лагранжа»

В начале статьи я упомянул о точках Лагранжа на просто так. Они есть у каждой пары космических тел (обычно — Солнца и планеты, но есть и у планет со спутниками) и вблизи них космический аппарат может находиться довольно долго в состоянии неустойчивого равновесия и быть почти неподвижным относительно этой планеты. Например, точки L1 и L2 Земли находятся на оси Земля-Солнце.

jyaq3 slvqjwtzfimzwonqjsmzs

На таких орбитах станции будут обращаться вокруг Солнца, оставаясь неподвижными относительно Земли, — в направлении к Солнцу и от него. Это так называемые точки Лагранжа L1 и L2, где космический аппарат может неподвижно висеть, не расходуя топлива. Этим уже давно пользуются: в L1 работает солнечная обсерватория SOHO, а в L2 — астрофизический зонд WMAP. Туда же планируется вывести 6-метровый телескоп имени Джеймса Уэбба, который строится на смену стареющему «Хабблу».

Взгляните на эту непростую траекторию аппарата ISEE-3/ICE:

m mq

Труженик ISEE-3/ICE четыре года (1978—1982) изучал Солнце с орбиты вокруг точки Лагранжа L1, а затем путем сложных гравитационных маневров у Земли и Луны он был направлен на встречу с кометами Джакобини — Циннера (1985) и Галлея (1986). В 2012 году он вернулся к нам, но интерес к миссии был уже потерян, и даже оборудование для связи с ним было списано. И в 2014 году связь с ним была окончательно потеряна, ну да ладно.

Среди многочисленных траекторий ухода от точки L1 есть такие, которые на время приводят аппарат на орбиту вокруг L2 (и наоборот). Причем для этого не требуется серьезных затрат топлива. Для случая с нашей планетой это не столь важно. То ли дело — система Юпитера или Сатурна, в которых для каждого большого спутника есть пара таких точек. Например, для Ио, Европы, Ганимеда и Каллисто на орбите Юпитера. Двигаясь вокруг планеты, внутренние спутники обгоняют внешние, и если правильно подгадать, то ценой совсем небольших затрат топлива аппарат может перепрыгнуть с неустойчивой орбиты вокруг точки L2, скажем, спутника Ио на такую же орбиту вокруг точки L1 Европы. Покрутившись там и проведя наблюдения, можно подняться еще на одну ступеньку «лестницы» — к точке L2 Европы, а оттуда в нужный момент прыгнуть к L1 Ганимеда, а там и до Каллисто недалеко. Спускаться по этой «лестнице Лагранжа» тоже не возбраняется.

Именно такой план полета предлагался для большой исследовательской станции JIMO (NASA). Однако эту экспедицию отменили враги, и теперь вместо неё будет миссия JUICE (Jupiter Icy Moons Explorer), которую Европейское Космическое Агентство готовит для изучения галилеевых спутников Юпитера. До сих пор спутники Юпитера исследовались только с пролетных траекторий. «Лестница Лагранжа» позволит станции подолгу зависать над спутником — изучать его поверхность и отслеживать происходящие на ней процессы.

Каковы перспективы? Автостопом до облака Оорта?

В нашей звёздной системе насчитывается несколько десятков крупных и тысячи не очень массивных космических тел. Разумеется, бросается в глаза «великолепная пятёрка»: Солнце, Юпитер, Сатурн, Уран и Нептун. Однако гравитационные возмущения в траектории полётов космических аппаратов вносят все тела Солнечной системы, не забывая возмущать орбиты друг друга. И сейчас мы уже можем позволить рассчитывать гравитационное влияние и малых планет Солнечной систем. Вот, например, миссия Rosetta к комете Чюрюмова-Герасименко (2004-2016 гг). Вначале аппарат двинулся к Солнцу и, обогнув его, вновь вернулся к Земле, откуда двинулся навстречу Марсу. Обогнув Марс, аппарат вновь сблизился с Землёй и затем снова вышел за орбиту Марса. К этому моменту комета находилась за Солнцем и ближе к нему, чем Rosetta. Новое сближение с Землёй направило аппарат в направлении кометы, которая в этот момент направлялась от Солнца вовне Солнечной системы. В конце концов Rosetta сблизилась с кометой с требуемой скоростью. Столь сложная траектория позволила снизить расход топлива за счёт использования гравитационных полей Солнца, Земли и Марса. Тут гифка с полным маршрутом аппарата.
А вот выход на орбиту кометы в целях её исследования и отправки на её поверхность спускаемого аппарата «Филы»:

image loader

Расчёт баллистических траекторий это «не решаемая» в лоб задача многих тел, требующая колоссальных вычислительных мощностей для совершения достаточного числа итераций. Но вот неуклонный рост этих самых вычислительных мощностей позволяет учитывать влияние всё большего числа массивных объектов, переводя это влияние из разряда неизбежной погрешности вычислений в разряд заранее предсказанных. Таким образом число «окон запуска» только растёт.
Вот тут, например, в очередной раз сообщается об обнаружении «скоростного хайвея» в Солнечной Системе — сложного переплетения гравитационных возмущений от тел Солнечной Системы, позволяющих точнее рассчитать траектории аппаратов и использовать ещё больше гравитационных манёвров вместо траты драгоценного топлива.

Постепенно расчёты полётов по нашей планетной системе будут становиться похожими больше на автобусное расписание нежели на ожидание у моря погоды. Точность небесной механики, помноженная на точность наблюдений и вычислений, способна совершить переворот в наших взглядах на космические путешествия.

Облачные серверы от Маклауд идеально подходят для расчета траектории вашего побега на Марс.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Источник

Оцените статью
Добавить комментарий

Adblock
detector