Накопленная частота как найти

clothing store 984396 1920 Советы на день

Статистическое изучение вариационных рядов и расчет средних величин

Поможем написать любую работу на аналогичную тему

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Вид вариационного ряда

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через statisticheskoe izuchenie variacionnyh rjadov i 1, т.е. statisticheskoe izuchenie variacionnyh rjadov i 2. Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Распределение студентов по оценкам, полученным на экзамене

Количество студентов (f)

В % к итогу (statisticheskoe izuchenie variacionnyh rjadov i 1)

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

statisticheskoe izuchenie variacionnyh rjadov i 3

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Распределение рабочих по выработке

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

statisticheskoe izuchenie variacionnyh rjadov i 4

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

statisticheskoe izuchenie variacionnyh rjadov i 5

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

statisticheskoe izuchenie variacionnyh rjadov i 6

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина. Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

statisticheskoe izuchenie variacionnyh rjadov i 7

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая. Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

statisticheskoe izuchenie variacionnyh rjadov i 9,

Если значение признака встречается несколько раз, то среднюю величину находят по формуле для сгруппированных данных и средняя величина будет называться среднеарифметическая взвешенная.

statisticheskoe izuchenie variacionnyh rjadov i 10

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда statisticheskoe izuchenie variacionnyh rjadov i 11.

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то statisticheskoe izuchenie variacionnyh rjadov i 12.

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е. statisticheskoe izuchenie variacionnyh rjadov i 13

Если statisticheskoe izuchenie variacionnyh rjadov i 14, то statisticheskoe izuchenie variacionnyh rjadov i 15. Отсюда statisticheskoe izuchenie variacionnyh rjadov i 16.

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a, т.е. x´ = xa.

Тогда statisticheskoe izuchenie variacionnyh rjadov i 17

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a, т.е. statisticheskoe izuchenie variacionnyh rjadov i 18.

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть statisticheskoe izuchenie variacionnyh rjadov i 19, тогда statisticheskoe izuchenie variacionnyh rjadov i 20.

Отсюда statisticheskoe izuchenie variacionnyh rjadov i 21, т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

statisticheskoe izuchenie variacionnyh rjadov i 22

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит statisticheskoe izuchenie variacionnyh rjadov i 23долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

statisticheskoe izuchenie variacionnyh rjadov i 24– для невзвешенных значений,

statisticheskoe izuchenie variacionnyh rjadov i 25– взвешенная,

где statisticheskoe izuchenie variacionnyh rjadov i 26– варианты осредняемого признака; statisticheskoe izuchenie variacionnyh rjadov i 27– произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

statisticheskoe izuchenie variacionnyh rjadov i 28

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Соотношение между средними величинами

Соотношение между средними

statisticheskoe izuchenie variacionnyh rjadov i 29statisticheskoe izuchenie variacionnyh rjadov i 49, если совокупность небольшая и мода отчетливо выражена.

Все рассмотренные формы степенной средней обладают важным свойством (в отличие от структурных средних) – в формулу определения средней входят все значения ряда т.е. на размеры средней оказывают влияние значение каждого варианта.

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

Второй квартиль, есть медиана Q2 = Ме. Нижний и верхний квартили в интервальном ряду рассчитываются по формуле аналогично медиане.

Для нижнего квартиля statisticheskoe izuchenie variacionnyh rjadov i 50.

Для верхнего квартиля statisticheskoe izuchenie variacionnyh rjadov i 51.

где statisticheskoe izuchenie variacionnyh rjadov i 52– нижняя граница интервала, содержащего соответственно нижний и верхний квартиль;

statisticheskoe izuchenie variacionnyh rjadov i 53– накопленная частота интервала, предшествующего интервалу, содержащему нижний или верхний квартиль;

statisticheskoe izuchenie variacionnyh rjadov i 54– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

statisticheskoe izuchenie variacionnyh rjadov i 55первый дециль.

statisticheskoe izuchenie variacionnyh rjadov i 56второй дециль и т.д.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.

Источник

Расчет накопленных частот и процентной суммы накопленных частот

Классы группировки Точные границы классов Частоты данных (¦) Накопленные частоты (¦cum) Процентная сумма накопленных частот (%)
10 9 8 7 6 5 4 3 2 1 54,5-59,5 49,5-54,5 44,5-49,5 39,5-44,5 34,5-39,5 29,5-34,5 24,5-29,5 19,5-24,5 14,5-19,5 9,5-14,5 1 1 3 4 6 7 12 6 8 2 50 49 48 45 41 35 28 16 10 2 1,00´100=100 0,98´100=98 0,96´100=96 0,90´100=90 0,82´100=82 0,70´100=70 0,56´100=56 0,32´100=32 0,20´100=20 0,04´100=4

image012

Рис. 1.1.6. Гистограмма и кривая накопленных частот первичных результатов

исследования выборки (см. табл. 1.1.5).

Меры центральной тенденции. Среди множества мер центральной тенденции для обработки результатов психологических исследований чаще всего используют среднюю арифметическую величину (М) и медиану (Me).

В случае небольшого числа первичных результатов и отсутствия предварительной их группировки значение средней арифметической получают путем последовательного суммирования исходных величин (X) с последующим делением этой суммы на общее количество исходных данных (N):

image014.

Если массив первичных данных был подвергнут предварительной группировке, то для вычисления средней арифметической величины проделывают следующие операции. Для каждого класса группировки определяют произведение частоты класса (f) на центр группировки класса (X), а затем суммируют эти произведения и полученную величину делят на общее количество исходных данных N:

image016.

Так, для примера, приведенного в табл. 1.1.4, мы имеем: 57+52+141+ +168+222+224+324+132+136+24 =1480 и image018= 29,60, т. е. М = 29,60.

1. Находим половину наблюдений в массиве данных т. е. N/2. В нашем примере: 50:2 = 25,0.

2. Суммируем частоты, начиная с минимального класса группировки, до класса, содержащего половину необходимых наблюдений т. е. медиану. Для нашего примера, в котором N =50, половиной наблюдений будет 25. Итак, по данным табл. 1.1.4 это: 2 + 8 + 6 + 12 = 28. Отсюда очевидно, что медиана предположительно расположена в 4-м классе группировки, точные границы которого 24,5 и 29,5.

3. Определяем, сколько же наблюдений из класса, содержащего медиану, необходимо для того, чтобы найти ее. Поскольку сумма накопленных частот из предыдущих трех классов равна 16 (см. табл. 1.1.5), то ясно, что из медианного класса необходимо еще 9 наблюдений, а именно 25-16 =9.

4. Вычисляем ту долю интервала на шкале, которая позволит определить точное положение медианы. Если в медианном классе имеем 12 наблюдений и наблюдения в пределах класса распределены равномерно, то при ширине класса, равной 5 единицам, получаем: 9/12´5 = 3,75.

5. Прибавляем полученный результат к нижней точной границе класса группировки, содержащего медиану: 24,5+3,75 = 28,25. Это и есть ее значение: = 28,25.

Существует аналитическая формула для интерполяции медианы:

image020,

* Величина F b в данной формуле соответствует по своему смыслу величине накопленных частот (fcum), расчет которой был продемонстрирован выше.

Как видно из нашего примера, когда распределение первичных результатов наблюдений или измерений отличается от нормального, то величины средней арифметической и медианы не совпадают: 29,60¹28,25.

Меры изменчивости. В качестве мер изменчивости результатов, характеризующих степень рассеивания отдельных величин вокруг средней арифметической, используются разные меры в зависимости от примененных шкал измерения. Для характеристики рассеивания величин интервальных шкал и шкал отношений пользуются значением среднеквадратичного отклонения (s). Для величин порядковых шкал используют значения полуквартильных отклонений (Q1, и Q3).

При несгруппированных данных произведем расчет так называемого стандартного отклонения, обозначаемого S. Понятие стандартного отклонения (S) на практике чаще всего используется как синоним среднего квадратичного отклонения (s). Расчет делается следующим образом:

1. Рассчитаем среднюю арифметическую величину (М).

2. Находим отклонение (х) каждого результата измерения (X) от средней арифметической величины: х=Х-М.

5. Делим сумму квадратов отклонений на общее число наблюдений (N) и получаем величину, называемую дисперсией(D):

image022

6. Извлекаем корень квадратный из дисперсии и получаем величину, называемую стандартным отклонением(S), или среднеквадратичное отклонение(s):

image024, s = image026.

Расчет дисперсии ( D) и стандартного отклонения (S) (при N=10)

Таким образом: D image028и S image030.

При сгруппированных данных формула расчета дисперсии приобретает следующий вид:

image032,

image034.

image036

4. Пользуясь найденными значениями величин, производим необходимые расчеты медиан обоих интервалов:

для левого Q1=19,5 + image038×5 = 21,58,

для правого Q3 = 39,5- image040×5 = 36,58.

5. Согласно определению квартального отклонения следует, что

image042,

т. е. в нашем примере Q = image044.

6. Однако этот результат получен нами для нормального распределения данных. На самом же деле, как показывает табл. 1.1.4, в нашем примере мы имеем дело с явно асимметричным распределением. Поэтому истинные полуквартильные отклонения в данном случае необходимо было рассчитывать с учетом вычисленного значения для медианы (или Q2), a именно, что = 28,25. Тогда мы получаем

для левого интервала Q2 – Q1 = 28,25-21,58 = 6,67,

С помощью данного приема можно очень легко определить право- и левостороннюю асимметрию любого распределения:

Табулирование первичных результатов для расчета коэффициента корреляции по Спирмену ( r)

Таким образом: r = image047=1- image049=1- image051=1-0,305=0,695.

Коэффициент корреляции по формуле Пирсона рассчитывается на основе отклонения первичных результатов и среднего квадратичного отклонения от их среднеарифметического значения. Формула расчета коэффициента корреляции по К. Пирсону может быть представлена следующим образом:

rxy = image053,

Рассмотрим пример, который позволит проследить этапы расчета. Допустим, что переменная Х представлена результатами измерения (в сантиметрах) величины коленного рефлекса при инструкции расслабить мышцы; переменная Y – то же, но при инструкции напрячь мышцы (табл. 1.1.8). Проверяется гипотеза о том, что величины коленного рефлекса не взаимосвязаны между собой.

Последовательность расчета коэффициента следующая.

Мх = image055и MY = image057

находим средние арифметические значения для переменных Х и Y (в нашем примере Мх =7,5; MY = 8,0).

3. Значение каждого отклонения х и у возводим в квадрат: x 2 и у 2 (см. 5-ю и 6-ю графы).

Расчет коэффициента корреляции по Пирсону ( r)

Таким образом: rXY = image059= image061= image063= 0,76.

4. По формуле для среднего квадратичного отклонения рассчитываем sх иsy (в нашем примере sх =3,53; sy =3,79).

5. Определяем произведения для каждой пары отклонений (см. 8-ю графу).

6. Полученные величины подставляем в формулу коэффициента корреляции по Пирсону. Полученный для нашего примера коэффициент корреляции rXY = 0,76 свидетельствует о том, что обе величины коленного рефлекса взаимосвязаны, несмотря на различные условия их измерения.

Дата добавления: 2018-11-24 ; просмотров: 321 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Добавить комментарий

Adblock
detector
Номер испытуемого X Y RX RY d d 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 47 71 52 48 35 35 41 82 72 56 59 73 60 55 41 75 79 85 50 49 59 75 91 102 87 70 92 54 75 68 11,0 4,0 9,0 10,0 14,5 14,5 12,5 1,0 3,0 7,0 6,0 2,0 5,0 8,0 12,5 8,0 6,0 5,0 14,0 15,0 12,0 8,0 3,0 1,0 4,0 10,0 2,0 13,0 8,0 11,0 3,0 2,0 4,0 4,0 0,5 2,5 4,5 2,0 2,0 3,0 4,0 0,0 8,0 0,0 1,5 9,00 4,00 16,00 16,00 0,25 6,25 20,25 4,00 4,00 9,00 16,00 0,00 64,00 0,00 2,25