Виды матриц с примерами
В данной публикации мы рассмотрим, какие виды матриц существуют, сопроводив их практическими примерами для демонстрации изложенного теоретического материала.
Напомним, что матрица – это некая прямоугольная таблица, состоящая из столбцов и строк, которые заполнены определенными элементами.
Виды матриц
1. Если матрица состоит из одной строки, она называется вектор-строкой (или матрицей-строкой).
2. Матрица, состоящая из одного столбца, называется вектором-столбцом (или матрицей-столбцом).
4. Нулевая – матрица, все элементы которой равняются нулю ( aij = 0).
5. Диагональная – квадратная матрица, у которой все элементы, за исключением расположенных на главной диагонали, равняются нулю. Одновременно является верхней и нижней треугольной.
6. Единичная – это разновидность диагональной матрицы, у которой все элементы главной диагонали равны единице. Обычно обозначается буквой E.
7. Верхняя треугольная – все элементы матрицы ниже главной диагонали равны нулю.
8. Нижняя треугольная – матрица, все элементы которой выше главной диагонали равняются нулю.
9. Ступенчатая – матрица, для которой выполняются следующие условия:
Какие бывают матрицы? Виды матриц.
Для начала неплохо бы знать, что такое матрица вообще. Об этом подробно изложено в предыдущем материале.
А какие же матрицы в природе бывают? Об этом мы поговорим прямо здесь и сейчас.
Матрицы бывают разные. Чёрные, белые, красные…) Ээээ… Ну, извините, не удержался… Всякие матрицы бывают.) Принципов классификации матриц великое множество. Но основных принципов, с которыми нам предстоит работать в линейной алгебре, совсем немного. Всего два. Это классификация матриц по размерности и по условиям, налагаемым на их элементы.
Будьте готовы к тому, что в этом уроке, помимо собственно матриц, будет и немного геометрии. Самой примитивной. Для наглядности.) Итак, начнём с классификации матриц по размерности.
Классификация матриц по размерности
Например, даны вот такие четыре матрицы:
Какая размерность будет у каждой из них? Ну, с первыми двумя вопросов нет: в матрице A две строки и три столбца, а в матрице B — три строки и три столбца.
А какая размерность будет у матрицы С? Не всех осеняет сразу…) Очень простая: одна строка и три столбца! Или 1х3. Каждый столбец матрицы С содержит всего по одному элементу. Так бывает.) С последней матрицей D всё аналогично, только наоборот — три строки и один столбец (3x1).
Насочинять можно ещё много чего, но общая суть классификации любых матриц по размерности очень простая. До ужаса.)
Смотрим на картинку:
А теперь вникаем и фиксируем в памяти:
Если в матрице размерности m x n число строк НЕ равно числу столбцов (m≠n), то такая матрица называется ПРЯМОУГОЛЬНОЙ матрицей размерности m x n.
Если же количество строк и столбцов совпадает (m=n), то такую матрицу называют КВАДРАТНОЙ матрицей размерности n x n. Или, по-другому, квадратной матрицей n-го порядка.
Всё элементарно. Совпадает число строк и столбцов — матрица квадратная, не совпадает — прямоугольная.
В нашем случае матрицы A, C и D — прямоугольные, а вот B — квадратная. Размерности «три на три». Или, по-научному, квадратная матрица третьего порядка.
Зачем я вообще рисую картинки, пояснения и так подробно всё расписываю? Да затем, что эти простые понятия надо усвоить железно! До автоматизма. Сами же потом спасибо скажете. На зачёте или экзамене…)
Например, квадратная матрица — важная птица в линейной алгебре! Почему? А потому, что такие важные для высшей математики операции, как, скажем, вычисление определителя и нахождение обратной матрицы возможны только для квадратных матриц! И ни для каких других. Это так, забегая вперёд.)
Отдельные названия заслужили такие прямоугольные матрицы, у которых количество строк или столбцов (или того и другого сразу) равно единичке.
Матрица, состоящая из одной строки, так и называется — матрица-строка.
это матрица-строка размерности 1х3.
Если же матрица состоит только из одного столбца, то, вы удивитесь, она называется… как? Правильно! Матрица-столбец!)
это матрица-столбец. Размерности 3х1.
По-другому матрицу-строку и матрицу-столбец называют ещё вектор-строка и вектор-столбец соответственно. А бывает и совсем коротко — просто «вектор». Именно в виде вот таких вот матриц-векторов принято записывать решения систем линейных (а иногда и дифференциальных!) уравнений. Привыкаем.)
Переходим к типам матриц по элементам.
Классификация матриц по их элементам
А вот с элементами матриц вопрос поинтереснее будет.) Ведь элементы матриц могут быть любыми действительными числами — положительными, отрицательными, целыми, дробными, иррациональными — любыми! Здесь простора для фантазии куда больше будет.
Но, так уж сложилось в процессе развития математики (и линейной алгебры — в частности), что удобнее всего людям работать с самыми простыми числами. Как можно проще! Либо с нулём, либо с единичкой. Проще чисел не найти, правда ведь? Информатика — та вообще только с нулями и единичками работает. Неспроста поди…:)
Поэтому общая идея работы с матрицами (любыми!) у нас будет такая: чем больше в матрице нулей и единичек, тем лучше! И мы в процессе изучения линейной алгебры и решения задач будем неотступно следовать этой идее настолько, насколько это возможно.)
Что такое нулевая матрица?
Запоминаем:
Нулевая матрица — это просто матрица, ВСЕ элементы которой равны нулю. Причём это может быть матрица любой размерности!
Это всё нулевые матрицы. Намёк понятен?) Любая нулевая матрица кратко обозначается буквой «О». Почти как число 0 в обычной арифметике.
Сами по себе нулевые матрицы не так интересны с практической точки зрения. Но для общей эрудиции знать не помешает. Зато следующий зверь в нашем зоопарке — единичная матрица — поинтереснее будет! К ней и переходим.)
Что такое единичная матрица?
Нет, вы не угадали.) Это вовсе не матрица, все элементы которой равны единичке. Здесь всё немножко похитрее будет.)
Хитрость номер один касается размерности единичной матрицы. Здесь всё очень жёстко. Дело в том, что любая единичная матрица, в отличие от нулевой, всегда квадратная. Скажем, два на два. Или пять на пять… И только такая! Это самое главное. Прямоугольных единичных матриц в высшей математике просто не бывает.
Хитрость номер два касается элементов единичной матрицы.
Итак, вникаем и запоминаем:
Единичная матрица — это КВАДРАТНАЯ матрица, у которой все элементы, стоящие на главной диагонали, равны единице, а все остальные элементы (вне главной диагонали) — нули.
Что такое главная диагональ? Это воображаемая линия, идущая из левого верхнего угла матрицы в правый нижний. И только так! Как при чтении книги.)
Смотрим на примере единичной матрицы «три на три»:
Что мы видим? Видим, что три элемента главной диагонали a11, a22 и a33 равны по единичке. А все остальные элементы, не стоящие на главной диагонали, — нули. Всё легко и просто.)
Почему, вдруг, именно эта диагональ матрицы заслужила гордое звание главной? А давайте-ка присмотримся к нумерации её элементов:
a11, a22, a33
Ну и как, просекли фишку? Да! Для всех элементов главной диагонали соответствующие номера строки и столбца совпадают! Или, что то же самое, i = j.
И так будет всегда. Для любой квадратной матрицы любого размера. В отличие от второй диагонали, для элементов которой такого удобного и красивого совпадения индексов просто-напросто не получается. Именно поэтому эта второстепенная диагональ и носит название побочной диагонали.
Как занумерованы элементы побочной диагонали? А вот как:
a13, a22, a31
Единичная матрица в математике обозначается заглавной буковкой «Е».
Вот и в матрицах то же самое! Один в один. Ну… почти.) Например, от умножения матрицы А на единичную Е исходная матрица А не меняется. Об этом в теме про умножение матриц и про обратную матрицу будет.)
Ну а коли уж мы затронули такую фишку, как главную диагональ, то переходим к ещё трём типам матриц, с которыми нам предстоит встретиться на просторах линейной алгебры.
Диагональные, треугольные и трапециевидные матрицы.
Эти матрицы — важные персоны при определении таких важных вещей, как ранг матрицы и (особенно!) при решении систем линейных алгебраических уравнений. С такими матрицами в процессе этих двух увлекательных занятий мы с вами будем сталкиваться регулярно.
Что такое диагональная матрица?
Диагональная матрица — это квадратная матрица, у которой все элементы вне главной диагонали — нулевые.
И всё! Есть, правда, и неквадратные матрицы, также называемые диагональными, но в 99% случаев под такой матрицей понимают всё же квадратную.
Смотрим на рисунок и всё видим:
Кстати, прошу заметить одну маленькую, но очень важную деталь. Сами диагональные элементы имеют полное право быть какими угодно — и нулевыми и ненулевыми! Например, нулевая (квадратная) и любая единичная матрица — это всё частные случаи диагональных матриц.
Чем полезна диагональная матрица? Да хотя бы тем, что такая трудоёмкая операция, как вычисление определителя, для такой матрицы осуществляется всего-навсего в одно действие! Да-да! Сами увидите.)
А определитель — очень важная штука в линейной алгебре, между прочим. Да и в аналитической геометрии, в дифференциальных уравнениях и прочих крутых разделах высшей математики тоже.)
А есть ещё такие суперкрутые штучки, как собственные векторы и собственные значения! Та ещё головная боль… Там такая матрица также будет возникать постоянно. Об этих штучках тоже в соответствующей теме подробненько будет.
Что такое треугольная матрица? Что такое трапециевидная матрица?
А такие матрицы у нас постоянно будут возникать при решении систем линейных уравнений методом Гаусса. Возможно, новичкам сейчас не очень понятно, о чём это я вообще, но если вы просто повторяете материал, то этим видам матриц здесь самое место.)
Треугольной матрицей называется любая КВАДРАТНАЯ матрица, все элементы которой над (или под) главной диагональю равны нулю.
Если нулевые элементы находятся под главной диагональю, то такая матрица называется верхней треугольной матрицей. Если же нулевые элементы стоят над главной диагональю, то, соответственно, нижней треугольной.
Матрица А — верхняя треугольная. Матрица В — нижняя треугольная.
Трапециевидная матрица чуть похитрее устроена, но ненамного. Формальное математическое описание такой матрицы (через символы и индексы) в общем виде довольно занудно, а вот конкретные примеры куда нагляднее будут.
Например, такая матрица 6х6:
Видно, что по размерности трапециевидная матрица может быть как квадратной, так и прямоугольной. Но все такие матрицы объединяет одна очень важная отличительная черта. Она заключается в следующем:
1. Число столбцов всегда либо БОЛЬШЕ числа строк (для прямоугольных матриц), либо РАВНО ему (для квадратных).
2. Все элементы, стоящие на главной диагонали, НЕНУЛЕВЫЕ.
3. Все элементы, стоящие НИЖЕ главной диагонали, равны нулю. При этом в матрице могут быть нулевые строки. А могут и не быть. Но, если они есть, то такие строки всегда находятся В САМОМ НИЗУ матрицы.
Зачем всё это добро нам нужно? Треугольные матрицы, трапециевидные… Ещё раз. Новичкам — пока особо незачем. Если вы только-только начинаете изучать матрицы и пока не слишком врубились — не беда. Но вот когда мы с вами дойдём до систем линейных уравнений, то с такими матрицами столкнёмся лицом к лицу. Неизбежно. И вот там я обязательно препровожу вас к изучению этого параграфа, уж будьте готовы.)
Итак, про разнообразные виды матриц поговорили. Как видим, тоже не так уж сложно. А теперь будем потихоньку учиться собственно работать с матрицами — транспонировать, складывать, перемножать, обращать и т.д. Эти темы повеселее будут.)
Действия с матрицами
Данное методическое пособие поможет Вам научиться выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>>.
Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами.
Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!
Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.
Обозначение: матрицы обычно обозначают прописными латинскими буквами
Пример: рассмотрим матрицу «два на три»:
Данная матрица состоит из шести элементов:
Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:
Это просто таблица (набор) чисел!
Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!
Рассматриваемая матрица имеет две строки:
и три столбца:
СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».
Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: – матрица «три на три».
Если в матрице один столбец или одна строка
, то такие матрицы также называют векторами.
На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки
записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение:
и
– это две совершенно разные точки плоскости.
Теперь переходим непосредственно к изучению действий с матрицами:
1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу).
Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.
Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:
У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.
Обратный пример: . Выглядит безобразно.
Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак:
Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок.
2) Действие второе. Умножение матрицы на число.
Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.
Еще один полезный пример:
– умножение матрицы на дробь
Сначала рассмотрим то, чего делать НЕ НАДО:
Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).
И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:
Из статьи Математика для чайников или с чего начать, мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.
Единственное, что желательно сделать в этом примере – это внести минус в матрицу:
А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.
В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка.
Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.
3) Действие третье. Транспонирование матрицы.
Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.
Транспонировать матрицу
Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:
– транспонированная матрица.
Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.
Транспонировать матрицу
Сначала переписываем первую строку в первый столбец:
Потом переписываем вторую строку во второй столбец:
И, наконец, переписываем третью строку в третий столбец:
Готово. Образно говоря, транспонировать – это значит взять матрицу за правый верхний угол и аккуратно повернуть её «на себя» по диагонали, «стряхивая» числа в столбцы транспонированной матрицы. Такая вот у меня ассоциация.
4) Действие четвертое. Сумма (разность) матриц.
Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.
Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!
Сложить матрицы и
Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:
Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.
Найти разность матриц ,
А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :
Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.
5) Действие пятое. Умножение матриц.
Чем дальше в лес, тем толще партизаны. Скажу сразу, правило умножения матриц выглядит очень странно, и объяснить его не так-то просто, но я все-таки постараюсь это сделать, используя конкретные примеры.
Какие матрицы можно умножать?
Чтобы матрицу можно было умножить на матрицу
нужно, чтобы число столбцов матрицы
равнялось числу строк матрицы
.
Пример:
Можно ли умножить матрицу на матрицу
?
, значит, умножать данные матрицы можно.
А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!
, следовательно, выполнить умножение невозможно:
Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.
Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и
возможно как умножение
, так и умножение
Как умножить матрицы?
Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей.
Начнем с самого простого:
Умножить матрицу на матрицу
Я буду сразу приводить формулу для каждого случая:
– попытайтесь сразу уловить закономерность.
Умножить матрицу на матрицу
Формула:
В результате получена так называемая нулевая матрица.
Попробуйте самостоятельно выполнить умножение (правильный ответ
).
Обратите внимание, что ! Это почти всегда так!
Таким образом, при умножении переставлять матрицы нельзя!
Если в задании предложено умножить матрицу на матрицу
, то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.
Переходим к матрицам третьего порядка:
Умножить матрицу на матрицу
Формула очень похожа на предыдущие формулы:
А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:
Умножьте матрицу на матрицу
Вот готовое решение, но постарайтесь сначала в него не заглядывать!
Данная тема достаточно обширна, и я вынес этот пункт на отдельную страницу.
А пока спектакль закончен.
После освоения начального уровня рекомендую отработать действия с матрицами на уроке Свойства операций над матрицами. Матричные выражения.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам