Объект математики как науки

woman 3287956 1920 Советы на день
Содержание
  1. Математика
  2. Содержание
  3. Основные сведения
  4. Этимология
  5. Определения
  6. Разделы математики
  7. Обозначения
  8. Краткая история
  9. Философия математики
  10. Цели и методы
  11. Основания
  12. Теоретико-множественный подход
  13. Логицизм
  14. Формализм
  15. Интуиционизм
  16. Конструктивная математика
  17. Основные темы
  18. Числа
  19. Математика
  20. Содержание
  21. Основные сведения
  22. Этимология
  23. Определения
  24. Разделы математики
  25. Обозначения
  26. Краткая история
  27. Философия математики
  28. Цели и методы
  29. Основания
  30. Теоретико-множественный подход
  31. Логицизм
  32. Формализм
  33. Интуиционизм
  34. Конструктивная математика
  35. Основные темы
  36. Числа
  37. 1. Объект и предмет математики
  38. Читайте также
  39. 2. Остановка бесконечного регресса путем логической тривиализации математики
  40. 1. Объект и предмет геологии. Основные этапы развития научного знания в геологии
  41. 1. Объект и предмет математики
  42. 1. Объект и предмет геологии. Основные этапы развития научного знания в геологии
  43. Диалектико-материалистическое истолкование математики
  44. 2. Принцип гомогенности. Объект науки и ее предмет
  45. Научная интеллигенция (математики, физики и т. д.)
  46. 1. Политика — предмет страсти или предмет науки
  47. Рукописная культура и готическая архитектура устремлены к свету, идущему сквозь предмет, а не падающему на предмет
  48. 3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?
  49. 3.8. Эзотерические математики не от мира сего как результат естественного отбора
  50. Программа Гильберта для математики
  51. Некоторые примеры нерекурсивной математики
  52. 3. Дао математики

Математика

Euclid

Евклид. Деталь «Афинской школы» Рафаэля

☀»математика это, скорее, язык, созданный для описания количественных отношений и пространственных форм объективного Мiръ(а) и математических языков несколько.

Содержание

Основные сведения

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

В текстах на русском языке слово «математика» или «маѳематика» встречается, по крайней мере, с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год) [8]

Определения

Одно из первых определений предмета математики дал Декарт [9] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [11] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит, в конце концов, найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [14] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [15] подразделяется на специальности:

3. Для систематизации научных работ используется раздел «Математика» [16] универсальной десятичной классификации (УДК).

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

Quipu

Кипу, использовались инками для записи чисел

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство png, при png3>»/> является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях». [17]

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Основные темы

Числа

Понятие «число» первоначально относилось к натуральным числам. В дальнейшем оно было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

Источник

Математика

Euclid

Евклид. Деталь «Афинской школы» Рафаэля

☀»математика это, скорее, язык, созданный для описания количественных отношений и пространственных форм объективного Мiръ(а) и математических языков несколько.

Содержание

Основные сведения

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

В текстах на русском языке слово «математика» или «маѳематика» встречается, по крайней мере, с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год) [8]

Определения

Одно из первых определений предмета математики дал Декарт [9] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [11] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит, в конце концов, найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [14] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [15] подразделяется на специальности:

3. Для систематизации научных работ используется раздел «Математика» [16] универсальной десятичной классификации (УДК).

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

Quipu

Кипу, использовались инками для записи чисел

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство png, при png3>»/> является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях». [17]

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Основные темы

Числа

Понятие «число» первоначально относилось к натуральным числам. В дальнейшем оно было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

Источник

1. Объект и предмет математики

1. Объект и предмет математики

Процесс отражения действительности математикой представляет собой яркий пример диалектики познания. Пожалуй, ни в одной другой науке нет столь парадоксального сочетания взаимоисключающих характеристик процесса познания, как в математике, где уживаются рядом интуитивная очевидность и логические доказательства, наглядность и крайняя отвлеченность, независимость от опыта и многообразные практические приложения. Эти особенности математики привлекают к ней пристальное внимание философов, чьи мнения о математике варьируются от признания ее идеалом науки вообще и образцом для подражания (Р. Декарт, Т. Гоббс, И. Кант) до полного отказа признать за нею какое-либо объективное значение (Д. Юм, Л. Виттгенштейн, Б. Рассел)[15].

Несмотря на большое число различных школ и направлений в современной буржуазной философии математики, в ней отсутствует сколько-нибудь убедительное объяснение процесса математического познания в целом. Абсолютизируя какую-либо одну из особенностей математического знания, они создают тем самым искаженное представление о целом. Лишь с позиций диалектического материализма, руководствуясь марксистско-ленинским пониманием познания как активного, творческого отражения объективного мира человеческим сознанием, можно создать целостное представление о диалектике математического познания во всей ее сложности и противоречивости и тем самым дать математике философское обоснование. Основной вопрос математики тесно связан с основным вопросом философии. Объекты исследования математики составляют определенные отношения в объективном мире, математические построения, которые могут быть очень удаленными от этого мира и создавать видимость независимости первых от второго. Этот мировоззренческий вопрос, разделяющий материализм и идеализм в философии математики, следует отличать от методологической проблемы о предмете математики, заключающейся в определении основного содержания математики как науки, т. е. системы средств, способов и результатов познания ею своего объекта.

Различение объекта и предмета математического познания носит принципиальный характер. Решение проблемы об объекте математики требует ответа на вопрос: является ли математическое знание отражением объективного мира, существующего до, вне и независимо от познающего субъекта, или же оно служит формой самопознания субъекта? Следовательно, вопрос об объекте математического познания представляет собой конкретизацию основного вопроса философии применительно к математике. Определение объекта математики должно быть дано в категориях диалектического материализма. Наоборот, решая вопрос о предмете математики, мы не выходим за пределы диалектики процесса познания, определение предмета математики дается не посредством философских категорий, а с помощью общенаучных или специальных математических понятий[16].

Объектом математического познания всегда были различные типы единства количественной и качественной определенности, бесконечного и конечного, непрерывного и прерывного, структурного многообразия мира и его элементов. Предмет ее меняется в зависимости от уровня развития самой математики, ее методов познания, развития смежных с математикой наук, общественно-исторической практики. Никакая система понятий, будучи исторически конкретной и вследствие этого неполной и ограниченной системой, не может абсолютно отобразить всего содержания соответствующего свойства объективного мира, хотя в процессе исторического развития науки происходит уточнение и углубление знаний, познаются все более глубокие и существенные черты этого содержания. Следовательно, на каждом данном этапе развития математики ее предмет находится в определенном соответствии с ее объектом, но не совпадает с ним.

Исторически и логически первичными свойствами объективного мира, которые стали изучаться математикой, были различные отношения меры — количественно определенного качества или качественно определенного количества, с которыми люди изначально сталкивались в практической деятельности[17]. Математика начинала с изучения конкретных систем объектов, поэтому «качественная окраска» исследуемых количественных отношений мешала разглядеть изоморфизм отношений различных предметных областей, понять эти отношения как частные проявления некоторой абстрактной и общей структуры. Так, структура группы как математического конструкта в предельно общей форме оставалась скрытой за многими частными законами композиции, свойствами подстановок на множествах, сложением и умножением чисел, преобразованиями векторов в пространстве. В XVII–XIX вв. лишь некоторые выдающиеся мыслители видели в математике не сумму отдельных дисциплин, а общую науку об отношениях[18]. Даже Гегель воспринимал математику как науку о величинах и числах, правда отмечая ее абстрактно-количественный характер как метафизическую ограниченность, свидетельство отрыва количества от качества. «…Математика природы, если она хочет быть достойной имени науки, по существу своему должна быть наукой о мерах»[19], — подчеркивал он.

Таким образом, предмет математики — это теоретический образ объекта, его абстрактное и идеализированное представление. Со временем в математике все большее значение приобретают исследования, непосредственно направленные на познание не внешнего мира, а на само математическое знание и методы его получения. Происходит как бы переход от «первичного» отражения к «вторичному». Поскольку в этом случае объектом исследования становится само исследование, естественно назвать этот уровень математического познания метаисследованием, а его объект — математическое знание — метаобъектом[20].

Примером метаисследований являются работы по основаниям математики, но в целом область метаисследований в современной математике гораздо шире и включает в себя значительную часть таких математических исследований, которые не имеют непосредственного соприкосновения с решением каких-либо прикладных задач. Предмет математики в таком случае оказывается частью ее метаобъекта.

Важность метаисследований в математике определяется тем, что «вторичное» отражение по существу есть дополнение и продолжение «первичного» отражения. Исследование знания есть одно из средств изучения того объективного содержания, которое отражено в нем. То же можно сказать и об изучении познавательных процедур. Зная какую-либо познавательную процедуру, можно найти вид знания, которое с ее помощью было получено, и на основании последнего определить объективный аналог этого знания[21]. Однако отметим еще раз, что метаисследование следует рассматривать как вспомогательный вид познания, подчиненный главной задаче — познанию объективного мира.

Метаисследование в таком понимании не только не совпадает, но прямо противоположно тому, что принято называть метаматематикой. Дело в том, что метаисследования относятся к идеальным, абстрактным объектам — понятиям, смыслам, суждениям, в то время как метаматематика имеет дело только с конкретными «объектами» вроде знаков какого-нибудь искусственного языка, значения которых в рамках метаматематического исследования не принимаются во внимание. Формальные системы, «представляющие» тот или иной раздел содержательной математики, изучаются в метаматематике как материальные объекты со структурой, подобно фигурам в геометрии, им можно приписывать только такие свойства и отношения, которые воспринимаются непосредственно. Объект метаматематики — это результат «двойного отрицания» первичного, объективно-реального объекта. Здесь происходит возврат к чувственному созерцанию изучаемых отношений, но уже между не «естественными», а искусственными объектами.

Однако в некоторых работах по философии математики отмечается, что основным объектом математического познания является не реальный объект, а метаобъект или даже «метаметаобъект». Гносеологическим источником этой ошибки является относительная независимость метаобъекта. Известно, что даже наиболее элементарные понятия математики абстрактны по своему содержанию. Поэтому при создании математических теорий приходится учитывать не столько содержательные, сколько формальные, логические, независимые от конкретного содержания отношения между понятиями. Известно, что уже на заре развития математики достоверность выводов определялась не содержательными, а формальными критериями, поскольку математика сама по себе не содержит критериев, позволяющих отличать утверждения, относящиеся к действительности, от утверждений, имеющих только математический смысл. Так, понятие существования в математике значительно отличается от понятия объективно-реального существования[22].

Эти обстоятельства и способствуют тому, что иногда в сознании некоторых математиков метаобьект получает статус самостоятельного существования, утрачивается представление о его вторичности, зависимости от объекта и субъекта, математические понятия начинают рассматриваться уже не как образ объективной реальности, а как сама эта реальность. В этом случае метаобъект вместо того, чтобы выполнять роль «оптического прибора», позволяющего лучше рассмотреть объект, становится как бы экраном, заслоняющим его от взоров исследователя[23]. Отсюда возникает иллюзия, что метаобъект есть не только главный, но и вообще единственный объект изучения, математика превращается из науки о свойствах объективного мира в науку о математическом знании и способах его получения, что в итоге приводит к субъективно-идеалистической трактовке ее объекта. Это можно проиллюстрировать на нескольких примерах историко-философского рассмотрения этой проблемы.

Так, известно, что Платон настолько абсолютизировал понятия математики, что превращал их в самостоятельные трансцендентные «идеи», вечные идеальные формы, знание о которых душа приобретает во время пребывания в потустороннем мире[24]. В этом случае основные понятия математики оказываются врожденными, не зависящими как от личного, так и от коллективного опыта людей, «открываются», а не «изобретаются». Последователи Платона абсолютизируют относительную независимость математического знания от эмпирического содержания. Объективность содержания понятий истолковывается в том смысле, что и они сами, а не только их прообразы существуют вне и независимо от сознания.

Математическое знание действительно обладает известной независимостью от эмпирического опыта, но эта независимость не абсолютна, она имеет свои границы[25]. Математика не является теорией, выведенной из априорного основания. Хотя ее основные понятия и невыводимы непосредственно из эмпирического опыта, а являются результатом творческой, конструктивной деятельности мышления, но мотивы и цели этой деятельности детерминированы факторами, находящимися в объективном мире.

Для идеалистического рационализма математика была знанием автономным, независимым от эмпирии и в то же время имевшим объективное значение. При этом полагалось, что применимость математики к наукам о природе свидетельствует о гармонии разума и бытия. Новые открытия в математике заставили сторонников рационализма отказаться от первоначальных упрощенных представлений об этой гармонии и искать возможности для установления более сложных ее форм. Когда было обнаружено, что относительно некоторой «математической реальности» можно построить несколько непротиворечивых, но несовместимых теорий, стало ясно, что в данном случае выбор между ними нельзя сделать на основе «разума». Тогда пришли к выводу, что этот вопрос должен решаться в «опыте».

Если в платонизме абсолютизировалась относительная самостоятельность понятийного компонента математического познания, то в кантовской философии математики абсолютизировалась сама «математическая деятельность». Так как «мы a priori, — писал И. Кант, — познаем о вещах лишь то, что вложено в них нами самими», — объекты, познаваемые нами посредством «априорного созерцания», суть продукты нашего собственного воображения[26]. Он считал, что в математике познание происходит путем «конструирования понятий». «…Конструировать понятие — значит показать a priori соответствующее ему созерцание», некоторый наглядный образ. Следовательно, в математическом познании мы рассматриваем не внешнюю реальность (материальную или, как считал Платон, идеальную), а результаты деятельности рассудка и воображения, раскрывающей содержание (эксплицирующей) «чистой интуиции пространства»[27].

То, что Кант стремился показать единство образного и дискурсивного (понятийного) моментов в математическом познании, подчеркивало важную роль в нем творческой, конструктивной деятельности субъекта, имело положительное значение. Однако при этом он истолковывал неконструктивные компоненты математического знания не как отражение внешнего мира, а как данные a priori, т. е. мистически. Архаичным выглядит и его стремление уложить все многообразное содержание математики в рамки «евклидовой интуиции» пространства, ограниченность которой обнаружилась уже с открытием неевклидовых геометрий. Но это было позже. А тогда, как справедливо заметил М. Бунге, «из всего солидного вклада Канта (в философию математики. — Авт.) его идея чистой интуиции оказалась наименее ценной, но, к сожалению, не наименее влиятельной»[28].

Действительно, попытка «вывести» математику из чистой интуиции, но уже не пространства, а времени была предпринята интуиционизмом — субъективно-идеалистическим течением современной буржуазной философии математики. Основатель его — Л. Э. П. Брауэр полагал, что в интуиции времени содержатся все элементы, необходимые и достаточные для построения натурального ряда чисел, а следовательно, и всех основных математических теорий. Но поскольку человек обладает интуицией только относительно небольших чисел, то в остальных случаях необходимо опираться не на интуитивную очевидность, а на критерий «конструктивности», согласно которому «реально существующими» в интуиционистской математике признавались только те объекты, которые можно было фактически построить.

В философском плане интуиционизм близок как к позитивизму, так и к более ранним формам субъективного и объективного идеализма: неоплатонизму, картезианству, кантианству. По существу это «математический операционализм». Абсолютизация им значения математической конструктивной (причем именно алгоритмической) деятельности приводит к недооценке объективного содержания математического знания. «С интуиционистской точки зрения математика является изучением определенных функций человеческого разума… она не выражает истину о внешнем мире»[29], — писал А. Гейтинг.

Платонизм и интуиционизм преувеличивают относительную самостоятельность математического знания, отрывая его либо от объективного мира (интуиционизм), либо от человеческого сознания (платонизм).

В противоположную крайность впадают представители метафизического материализма, выступающие в философии математики под флагом эмпиризма или номинализма. Эмпиризм признает единственным источником знания чувственный опыт, не допускает возможности знания о ненаблюдаемом. Номинализм не признает объективность общего, существование необходимых связей между сходными объектами, принадлежащими к некоторому классу. Следовательно, как эмпирики, так и номиналисты отрицают объективность сущности, поскольку она ненаблюдаема и обладает общим и необходимым характером. На этом основании они отказываются признать объективное содержание общих терминов и принимают их только в качестве «общих имен», подчеркивая тем самым, что они происходят из «ноуменов» (языка), а не из опыта.

Таким образом, если в идеалистической философии математики метаобъект служит единственным предметом изучения для математики, то в эмпиризме и номинализме он отбрасывается как «реальность», исследуемая в математическом познании, которое связывается непосредственно с чувственным опытом[30]. Однако если бы математическое знание было ограничено пределами непосредственно наблюдаемых, чувственно воспринимаемых объектов, их свойств и отношений, то в нем не могли бы содержаться такие математические объекты, которые в опыте вообще не встречаются, да и по своим свойствам не могут реально существовать. Вопреки эмпиризму математика не каталогизирует чувственный опыт, а ставит на место чувственно данного различия объектов многообразие абстрактных объектов, удовлетворяющее не требованиям непосредственной чувственной данности, а логической непротиворечивости и полноты.

«Математические» свойства (за редким исключением) не даны в чувственном опыте и поэтому скорее приписываются вещам, чем обнаруживаются в них[31]. Понятия математики, даже элементарные, как правило, не могут быть получены в результате абстрагирования от конкретно данного; для их создания нужны другие познавательные приемы[32]. К последним относятся прежде всего умозрительное конструирование, создание «конструктов», т. е. понятий, получаемых посредством замещения элементов некоторого структурного образа («гештальта»), заимствованного из имеющегося в наличии эмпирического (научного или обыденного) знания, идеализированными образами («идеалами») каких-либо эмпирических объектов или же их свойств и отношений.

Если в качестве источника «гештальтов» и «идеалов» принимают не эмпирическое знание, отражающее природные объекты, их свойства и отношения, а знание, полученное в результате исследования самого процесса познания и его результатов, выраженных на каком-либо естественном или искусственном языке, то полученные таким образом понятия будут уже не обычными конструктами, а «метаконструктами». В математическом знании имеются как конструкты, так и метаконструкты, поскольку математика занимается исследованием не только объекта, но и метаобъекта. Поскольку в силу общего характера математические понятия способны отображать не только форму объективного содержания, но и форму знания, то в математику входят и «формальные метаконструкты» — понятия, отображающие формальную общность языковых средств (математических, физических, биологических). Математика, таким образом, способна выполнить по отношению к естественнонаучному знанию функции формальной метатеории, подобно тому как теория объективной диалектики способна выполнять роль содержательной метатеории[33].

«Умозрительное» происхождение математических понятий не означает, что они суть «продукты чистого мышления». При создании конструктов «строительный материал» берется из уже имеющегося знания, но из него создаются новые сочетания, которых не было в наличном знании. Таковы понятия дифференциала и интеграла, мнимые и комплексные числа, бесконечно удаленные точки и прямые в проективной геометрии и т. п. Все понятия создаются людьми. Существенно, однако, то, что в содержании научных понятий определяющая роль принадлежит объективно истинному содержанию, а конструктивный элемент играет подчиненную роль. В содержании же художественных образов это соотношение может быть прямо противоположным.

Представители современного математического эмпиризма рассматривают математику уже не как эмпирическую, а как «метаэмпирическую» науку. Это позволяет существенно расширить круг математических понятий, обосновываемых «эмпирически» в этом смысле слова. Они утверждают, например, что «математика есть наука о формальных методах», т. е. исследует не содержание, а только форму математического знания, законы построения искусственного языка[34]. Но такой подход не позволяет решить вопроса об объективных основаниях математики, так как хотя язык и состоит из материальных элементов, но они созданы людьми и не существуют независимо от них. Современный эмпиризм игнорирует интерпретации формальных систем, т. е. абстрактные объекты.

Такой подход способствует распространению мнения об «информационной пустоте математики», о «конвенциональном характере» ее положений. В русле неоэмпиризма (или формализма) предпринимались попытки формального обоснования математики, которое должно было быть достигнуто без обращения к смысловой стороне математических выражений[35]. Таким образом, «живая» математика здесь подменялась мертвой схемой. Между тем математическому мышлению свойственна диалектика, ему в высшей степени присуща всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей[36], проистекающая из связи абстрактного понятийного и конкретно-образного содержания. Искусственные языки с их жестко фиксированной семантикой не в состоянии отразить это богатое содержание. Поэтому формальными средствами нельзя решить проблему обоснования математики. Математическому мышлению недостаточно логики формальной, ему нужна логика диалектическая.

Читайте также

2. Остановка бесконечного регресса путем логической тривиализации математики

2. Остановка бесконечного регресса путем логической тривиализации математики В период с XVII по XX в. евклидианизм совершал грандиозное отступление. Спорадические арьергардные вылазки с целью пробиться сквозь строй гипотез к высотам первых принципов постоянно терпели

1. Объект и предмет геологии. Основные этапы развития научного знания в геологии

1. Объект и предмет геологии. Основные этапы развития научного знания в геологии Взаимоотношение диалектики природы и познавательного процесса обусловлено внутренними связями, определяющими исторический процесс развития научного знания. Это доказал Ф. Энгельс,

1. Объект и предмет математики

1. Объект и предмет математики Процесс отражения действительности математикой представляет собой яркий пример диалектики познания. Пожалуй, ни в одной другой науке нет столь парадоксального сочетания взаимоисключающих характеристик процесса познания, как в

1. Объект и предмет геологии. Основные этапы развития научного знания в геологии

1. Объект и предмет геологии. Основные этапы развития научного знания в геологии Взаимоотношение диалектики природы и познавательного процесса обусловлено внутренними связями, определяющими исторический процесс развития научного знания. Это доказал Ф. Энгельс,

Диалектико-материалистическое истолкование математики

Диалектико-материалистическое истолкование математики В ходе разработки методологических проблем научного познания в сферу научных изысканий Маркса и Энгельса вошли вопросы математики. Исследуя эти вопросы, основоположники марксизма стремились понять функции

2. Принцип гомогенности. Объект науки и ее предмет

2. Принцип гомогенности. Объект науки и ее предмет Принцип гомогенности в научно-теоретическом познании с наибольшей полнотой теоретически осознан и впервые применен в научном исследовании Марксом[119]. Возведение здания теоретической концепции предполагает мобилизацию

Научная интеллигенция (математики, физики и т. д.)

Научная интеллигенция (математики, физики и т. д.) На мой взгляд, она хорошо охарактеризована Амальриком как слой в целом весьма пассивный. Большинству ученых кажется, что они все-таки могут приносить пользу, и научная работа отнимает у них слишком много сил и времени.

1. Политика — предмет страсти или предмет науки

1. Политика — предмет страсти или предмет науки Если бы мы жили в пещерах и хижинах, охотились на диких зверей, били острогой рыбу, отыскивали съедобные коренья, то, наверное, мы так же, как наши далекие предки, молились бы усвоим деревянным богам о ниспослании удачной

Рукописная культура и готическая архитектура устремлены к свету, идущему сквозь предмет, а не падающему на предмет

Рукописная культура и готическая архитектура устремлены к свету, идущему сквозь предмет, а не падающему на предмет Отход схоластики от монастырского литературного гуманизма вскоре столкнулся с обилием древних текстов, вышедших из-под печатного пресса. Четыре века

3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?

3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом? Допустим, что в основе математического понимания и в самом деле лежит некая необоснованная формальная система F. Как же мы тогда можем быть уверены, что наши математические

3.8. Эзотерические математики не от мира сего как результат естественного отбора

3.8. Эзотерические математики не от мира сего как результат естественного отбора Какую же роль играет во всем этом естественный отбор? Возможно ли, чтобы естественным путем возник некий алгоритм F (или несколько таких алгоритмов), обусловливающий наше математическое

Программа Гильберта для математики

Программа Гильберта для математики Что есть истина? Как мы составляем наши суждения о том, что в мире является справедливым, верным, а что — нет? Следуем ли мы некоторому алгоритму, которому отдается предпочтение среди прочих, менее эффективных, в процессе всемогущего

Некоторые примеры нерекурсивной математики

Некоторые примеры нерекурсивной математики Существует немало областей математики, где возникают проблемы нерекурсивного характера. Это означает, что мы можем сталкиваться с задачами, ответ к которым в каждом случае либо «да», либо «нет», но определить, какой из них

3. Дао математики

3. Дао математики По-видимому, смысл экстраверсии – это движение психики из внутреннего центра вовне, в физический мир. Вольфганг Паули, знаменитый физик Как мы увидели, математику можно рассматривать как живой процесс осознания. Это отчасти означает, что она

Источник

Оцените статью
Добавить комментарий

Adblock
detector