Объем как физическая величина

girl 1828536 1920 Советы на день
Содержание
  1. Объём
  2. Содержание
  3. Вычисление объёма
  4. Математически
  5. Через плотность
  6. Единицы объёма жидкости
  7. Английские внесистемные
  8. Американские внесистемные
  9. Античные внесистемные
  10. Древнееврейские
  11. Русские внесистемные
  12. Единицы сыпучих веществ
  13. Английские внесистемные
  14. Русские внесистемные
  15. Молярный объём
  16. Прочие единицы измерения
  17. Примечания
  18. Литература
  19. Полезное
  20. Смотреть что такое «Объём» в других словарях:
  21. Определение площади и объема в физике с примером
  22. Вычисление объема простых фигур
  23. Единицы измерения объема
  24. Измерение объема тел неправильной формы
  25. Физические величины и их единицы измерения в физике с примерами
  26. Средства измерения
  27. Физические величины
  28. Длина, Площадь, Объем
  29. Время
  30. Перемещение и скорость
  31. Масса
  32. Сила
  33. Что называется физической величиной
  34. Что означает измерить физическую величину
  35. Кратные и дольные единицы
  36. Измерительные приборы
  37. Точность измерений
  38. Точность измерений
  39. Роль измерений в физике. Прямые и косвенные измерения
  40. Единицы измерения физических величин
  41. Пример №1
  42. Действия над физическими величинами
  43. Пример №2
  44. Пример №3
  45. физические величины и их измерение
  46. Что такое физическое исследование и каковы его методы
  47. Как измерить физическую величину
  48. Построение системы единиц
  49. Погрешности измерений
  50. Случайные погрешности
  51. Систематические погрешности
  52. Как определить погрешности косвенных измерений
  53. Как правильно записать результаты

Объём

Объём — количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п. Синонимом вместимости частично является ёмкость, но словом ёмкость обозначают также сосуды и качественную характеристику конденсаторов.

Принятые единицы измерения — в СИ и производных от неё — кубический метр, кубический сантиметр, литр (кубический дециметр) и т. д. Внесистемные — галлон, баррель.

Слово «объём» также используют в переносном значении для обозначения общего количества или текущей величины. Например, «объём спроса», «объём памяти», «объём работ». В изобразительном искусстве объёмом называется иллюзорная передача пространственных характеристик изображаемого предмета художественными методами.

Содержание

Вычисление объёма

Математически

В общем случае математически объём тела вычисляется по следующей интегральной формуле:

454b236e1f7a244b2d9429c4eb83e58f,

где 0fd29ece8cc95b242a52428546d306e0— характеристическая функция геометрического образа тела.

Для ряда тел с простой формой более удобным является использование специальных формул. Например, объём куба с длиной стороны, равной a, равен 75ec9c1092ad9603a2809e8f3fc7c6cc.

Через плотность

Объём находится по формуле: ad758a313cc9638e37ebaa82da68df2c

Единицы объёма жидкости

Английские внесистемные

Американские внесистемные

Античные внесистемные

Древнееврейские

Русские внесистемные

Единицы сыпучих веществ

Английские внесистемные

Русские внесистемные

Молярный объём

Vm — величина, равная отношению объёма V системы (тела) к её количеству вещества n:

Молярный объем для газов при нормальных условиях: Vm = 22,4 л/моль

Прочие единицы измерения

Примечания

Литература

40px Wiki letter w.svg

Полезное

Смотреть что такое «Объём» в других словарях:

объём — объём, а … Русский орфографический словарь

объём — объём … Словарь употребления буквы Ё

объём — объём/ … Морфемно-орфографический словарь

объём — сущ., м., употр. сравн. часто Морфология: (нет) чего? объёма, чему? объёму, (вижу) что? объём, чем? объёмом, о чём? об объёме; мн. что? объёмы, (нет) чего? объёмов, чему? объёмам, (вижу) что? объёмы, чем? объёмами, о чём? об объёмах 1. В… … Толковый словарь Дмитриева

объём — а; м. 1. Величина чего л. в длину, высоту и ширину, измеряемая в кубических единицах. О. геометрического тела. О. куба, цилиндра. О. здания. О. полтора кубометра. В объёме (в трёх измерениях; объёмно). 2. Содержание чего л. с точки зрения… … Энциклопедический словарь

объём — объём, объёмы, объёма, объёмов, объёму, объёмам, объём, объёмы, объёмом, объёмами, объёме, объёмах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

ОБЪЁМ — ОБЪЁМ, а, муж. 1. Величина чего н. в длину, высоту и ширину, измеряемая в кубических единицах. О. пирамиды. О. здания. 2. Вообще величина, количество. Большой о. работ. О. информации. О. знаний. | прил. объёмный, ая, ое (к 1 знач.). Объёмное… … Толковый словарь Ожегова

объём — ОБЪЁМ1, а, м Величина или вместимость предмета, определяемая произведением длины, высоты и ширины и измеряемая в кубических единицах. Объем бассейна в новой школе составляет 300 кубических метров. ОБЪЁМ2, а, м Количество или величина чего л.… … Толковый словарь русских существительных

ОБЪЁМ — ОБЪЁМ, мера части пространства, занимаемого телом. Единицей измерения служит объём единичного куба … Современная энциклопедия

объ — объ. Пишется вм. (об) перед е, ю, я, напр. объехать, объявить.Примечание. Вм. этой приставки и следующей за ней буквы и пишется обы, напр. обыграть. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

объ… — Пишется вместо об… перед е, ю, я, напр. объехать, объявить. Примечание. вместо этой приставки и следующей за ней буквы и пишется обы, напр. обыграть. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Источник

Определение площади и объема в физике с примером

Содержание:

Определение площади и объема:

В повседневной жизни нам довольно часто приходится иметь дело с определением таких величин, как площадь и объем. Представьте себе, что вам необходимо сделать ремонт в квартире (или доме): побелить стены и потолок, покрасить пол. Чтобы закупить необходимое количество материалов, нужно определить площадь поверхностей и объем краски.

Из уроков математики вам известно, как находить площадь некоторых фи-гур: квадрата, прямоугольника, параллелограмма.

196064

Рис. 6.1.

196067

Рис. 6.2.

196072

Рис. 6.3

Площадь прямоугольника ABCD (рис. 6.1) вычисляется по формуле:
S = a · b, (6.1)
где a – ширина прямоугольника, b – высота.

Из рис. 6.1 видно, что площадь прямоугольного треугольника АBC можно найти по формуле:
196096, (6.3)

Значение числа 196108можно получить, если разделить длину круга L на его диаметр. Причем не имеет значения, каков размер круга и в каких единицах измерены длина и диаметр (нужно только, чтобы это были одни и те же единицы).

Вычисление объема простых фигур

Каждое тело занимает определенный объем. Чем большую часть пространства занимает тело, тем больше его объем. Объем обозначают буквой V (от volume – объем). Чтобы найти объем прямоугольного бруска или ящика (математики называют эту геометрическую фигуру параллелепипедом) со сторона-ми a, b и h, надо их перемножить (рис. 6.4):

196120

Рис. 6.4.

196123

Рис. 6.5.

Рис. 6.6.

V = a · b · h (6.4)
Поскольку S = a · b,
где S – это площадь основания ящика, то формулу (6.4) можно переписать и так:

V = S · h (6.5)
У куба все ребра равны, потому его объем равняется:
V = a · a · a = a 3 (6.6)

Объем цилиндра (рис. 6.5) с радиусом основания R и высотой h можно также определить по формуле (6.5), то есть:
V = S · h = πR 2 · h (6.7)

Объем шара (рис. 6.6)
196155(6.8)

Единицы измерения объема

Поскольку длину сторон измеряют в единицах длины (метр, дециметр, сантиметр и т. д.), то единицы измерения объема – это единицы длины, возведенные в третью степень.

196175

Рис. 6.7. Один литр – это 1дм 3

Напомним, что дециметр – это десятая часть метра, а сантиметр – сотая часть метра

Таблица 6.1

Измерение объема тел неправильной формы

Прибор для измерения объема называют мензуркой, или мерным цилиндром (рис. 6.8). Мензурка – это прозрачный сосуд с нанесенными делениями, которые обозначают объем в миллилитрах. Дома у вас наверняка есть мерный стакан, то есть та же мензурка. Литровой или поллитровой банкой, или стаканом (250 мл) также можно пользоваться, если не нужна большая точность. С помощью мензурки можно определить объем жидкости и тела неправильной формы. Для этого в мензурку нужно налить воду и определить объем этой воды. Потом полностью погрузить тело в воду и запомнить новое значение объема. Разница измеренных значений равна объему тела.

196221
Рис. 6.8. Деления мензурки определяют объем в миллилитрах (то есть в см 3 )

История:

196243 Существует легенда, согласно которой первым такой способ определения объема изобрел древнегреческий ученый Архимед. Произошло это во время размышлений над довольно сложной зада-чей, предложенной царем Гиероном. Идея решения возникла тогда, когда Архимед влез в ванну и заметил, что уровень воды поднялся. Ученый понял, что вытесненный объем воды как раз равен объему погруженного в нее тела. Восторженный Архимед выпрыгнул из ванны и выбежал на улицу с криком «Эврика! Эврика!», что в переводе с древнегреческого значит «На-шел! Нашел!».

Итоги:

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Физические величины и их единицы измерения в физике с примерами

Содержание:

Явления природы и свойства тел в физике описывают с помощью терминов, например: движение, траектория, состояние спокойствия. Описывая движение (рис. 4.1), можно указать, куда движется тело (вперед, назад или вверх), большое оно или маленькое; движется по пря-мой или поворачивает (влево или вправо), а может, вообще не движется. Такая характеристика движения является качественной.

Нас интересуют и количественные характеристики: с какой скоростью двигался автомобиль, какое расстояние он проехал. Количественной характеристикой тела или явления является физическая величина. Физическая величина описывает определенное свойство тела или явления. Она характеризуется числовым значением и единицей измерения. Например: автомобиль проехал путь в 30 километров. Сокращенно можно записать S = 30 км.

Каждая физическая величина имеет свое на-звание и символ, которым она обозначается.

195599

Чтобы описать явление падения определенного тела, можно применить такие физические величины, как масса тела, высота, время падения. Физические величины обычно обозначают латинскими или греческими буквами. Массу тела обозначают буквой «m», высоту – буквой «h», время – буквой «t». Например, если тело массой 2 килограмма упало с высоты 5 метров за одну секунду, то пишут: m = 2 кг, h = 5 м, t = 1 с, употребляя общепринятые сокращения: кг – килограмм, м – метр, с – секунда.

Если нас интересует единица измерения физической величины, а не ее числовое значение, то эту величину пишут в квадратных скобках. Например, диаметр трубы составляет d = 3,2 см, а название единицы измерения (размерность): [d] =см.

Почему нужно измерять:

Начертите на листе бумаги горизонтальный отрезок. Потом проведите от середины этого отрезка перпендикулярный к нему отрезок такой же длины «на глаз». Измерьте длину отрезков линейкой, и вы убедитесь, что вертикальный отрезок короче. Вот почему нужно проводить измерения.

Средства измерения

Прямые измерения физических величин осуществляют с помощью приборов. Длину измеряют линейкой, время – с помощью часов, массу – на весах. Для определения размеров очень малых тел или больших расстояний используют более сложные приборы. Измерить физическую величину – значит сравнить ее с определенной мерой, которая является копией общепринятого образца-эталона. Эталонов немного, и хранятся они в специальных метрологических лабораториях.

История:

Для измерения времени использовали вытекание или капанье воды в сосуд с делениями или пересыпание песка – водяные или песочные часы (рис. 4.2). Движение Солнца по небу давало возможность измерять время с помощью солнечных часов (рис. 4.3). Такими часами люди пользовались несколько тысячелетий, однако они имели существенный недостаток – были довольно неточными.

195660

195668
Рис. 4.3. Солнечные часы

В настоящее время появились очень точные кварцевые часы, которые отсчитывают время в на-ручных часах, мобильном телефоне или компьютере. Для потребностей навигации и науки используют атомные часы, которые «ходят» настолько точно, что допускают ошибку в одну секунду за 500 000 лет!

Для измерения длины надо иметь образец, дли-на которого соответствует общепринятым единицам измерения. Сейчас это 1 м. Эталон (образец) метра хранится в метрологических лабораториях, главная из которых находится в г. Севре (Франция). Измерить длину можно еще и в других единицах измерения – канцелярскими скрепками, например, или спичками и сказать: мой рост составляет 80 скрепок или 36 спичечных коробков. Однако у других людей скрепки или спички могут оказаться другого размера, что усложнит обмен информацией. В давние времена так и было: пользовались футами (длина ступни – 30 см), дюймами (длина последней фаланги большого пальца, приблизительно 2,5 см), ярдами, пядями, саженями, локтями.

Инициаторами перехода на метрическую систему единиц были французы. Согласно договоренности, один метр определили как одну сорокамиллионную часть длины меридиана, который проходит через Париж. Для определения длины меридиана достаточно было измерять его часть, которая простирается от юга Испании до севера Норвегии. Начался этот процесс во время Великой французской революции. Днем рождения метрической системы мер считают 10 декабря 1799 г.

На территории нашей страны метрическая система мер была введена специальным декретом 14 сентября в 1918 г. Переход на новые стандарты измерений связан с изменением привычек, необходимостью переиздания справочников, переоборудования метрических лабораторий, с переподготовкой персонала и тому подобным. Все это стоит довольно дорого. США, например, переход на новые стандарты обошелся в 11 млрд. долларов.

Международная система единиц измерения – СИ

В связи с потребностью международного сотрудничества в 1960 году большинство стран мира подписали соглашение о единой Международной системе еди-ниц измерения SI – Systeme International (на русском языке – СИ).
195686
Рис. 4.4. Эталон метра хранится в Международном бюро мер и весов в Париже

195690
Рис. 4.5. Эталон килограмма

В СИ есть 7 основных единицы измерения, которые обеспечены соответствующими эталонами. Остальные единицы измерения могут быть выражены через основные единицы. Для начала нам понадобятся три основные единицы: метр, килограмм и секунда.

Эталон метра изображен на рис. 4.4. Это рельс определенного профиля, длина которого составляет одну сорокамиллионную часть меридиана, проходящего через Париж. Первый эталон метра был изготовлен во Франции в 1795 году.

В 1983 году эталон длины был изменен: теперь метр определен как расстояние, которое проходит свет в вакууме за 1/299 792 458 долю секунды.
Эталон килограмма – цилиндр из платиново-иридиевого сплава, высота которого равна его диаметру и составляет 39 мм (рис. 4.5).

С эталоном секунды вы ознакомитесь в 11 классе.

Таблица 4.1

Величина Символ Размерность
рус. междунар.
Длина l м m
Масса m кг kg
Время t с s
Площадь S, м 2 m 2
Объем V м 3 m 3
Скорость v м/с m/s

Площадь в СИ измеряют в м 2 (квадратные метры), объем – в м 3 (кубические метры).

В таблице 4.1 единицы площади, объема и скорости являются производны-ми единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные и дольные единицы.

Кратные единицы – это единицы, которые больше основных единиц в 10, 100, 1000 и больше раз. Например: 1 дм = 10 см = 10 1 см, 1 м = 100 см = 10 2 см, 1 км = 1000 м = 10 3 м, 1 кг = 1000 г = 10 3 г.

Дольные единицы – это единицы, которые меньше основных единиц в 10, 100, 1000 и больше раз: 1 см = 0,01 м = 10 –2 м, 1 мм = 0,1 см = 10 –1 см.
С единицами времени несколько иначе: 1 мин. = 60 с, 1 час = 3600 с. Дольными являются лишь 1 мс (миллисекунда) = 0,001 с = 10 –3 с и 1 мкс (микросекунда)= = 0,000001 с = 10 –6 с.
Для обозначения кратных и дольных единиц используют приставки (табл. 4.2).

Таблица 4.2 Приставки для обозначения кратных и дольных единиц

Кратность Приставка Обозначение Пример
русское международное русское международное
10 2 гекто hecto г h 5 гПа (гектопаскаль) = = 500 Па
10 3 кило kilo к k 6 кг (килограмм) = 6000 г
10 6 мега mega М M 2 МДж (мегаджоуль) = = 2 000 000 Дж
10 9 гига giga Г G 1 ГГц (гигагерц) = = 1 000 000 000 Гц
Дольность
10 –1 деци deci д d дм – дециметр
10 –2 санти centi с c см – сантиметр
10 –3 милли milli м м мл – миллилитр
10 –6 микро micro мк µ мкм – микрометр, микрон
10 –9 нано nano н n нм – нанометр

Итоги

Физические величины

Физические тела и явления характеризуют физическими величинами. Некоторые из них вам уже знакомы из курса природоведения: это длина, площадь, объем, масса, сила. Рассмотрим их подробнее.

Длина, Площадь, Объем

Длиной характеризуют физические тела и, например, путь, пройденный телом за время его движения. За единицу длины в SI принят 2 I метр (м).

На линейках и мерных лентах (рулетках) нанесены деления, обозначающие сотые и тысячные доли метра — сантиметры и миллиметры (рис. 3.1).

Единицы площади и объема определяют с помощью единицы длины: единицей площади является I м 2 (площадь квадрата со стороной I м), а единицей объема — I м 3 (объем куба с ребром I м).

Объем жидкости измеряют с помощью измерительных цилиндров, называемых часто мензурками (рис. 3.2). Длину, площадь и объем задают их числовыми значениями. Физические величины, которые задают только числовыми значениями, называют скалярными.

Время

Всякое физическое явление длится в течение определённого промежутка времени. За единицу времени в S1 принята 1 секунда (с), 60 с составляют 1 минуту (мун), а 60 минут — 1 час (ч).

Время измеряют часами (рис. 3.3). Они представляют собой обычно устройства, в которых повторяется определенный процесс. Например, в маятниковых часах повторяются колебания маятника. Сегодня чаще используют кварцевые часы, в которых колеблются крошечные кристаллы кварца.

204378

Перемещение и скорость

При движении тело изменяет свое положение в пространстве.

Перемещением тела называют направленный отрезок, проведенный из начального положения тела в его конечное положение.

Перемещение задают числовым значением (длиной указанного отрезка) и направлением. Физические величины, которые характеризуют числовым значением и направлением, называют векторными:

Значение векторной величины называют ее модулем.

Векторную величину обозначают буквой со стрелкой, а модуль — той же буквой без стрелки. Так, перемещение обычно обозначают 204392, а его модуль — 204395.

Скоростью тела называют физическую величину, равную отношению перемещения тела к промежутку времени, в течение которого произошло это перемещение.

Скорость, как и перемещение, является векторной величиной, то есть ее характеризуют модулем и направлением. Например, скорости двух встречных автомобилей могут быть равными по модулю, но направлены они противоположно. Скорость обозначают обычно 204403.

Единицей скорости в SI является 1 метр в секунду (м/с). Тело, которое движется с такой скоростью, за 1 с перемещается на 1 м, — это скорость прогулки. Рекорд скорости в беге — чуть больше 10 м/с.

Скорость современных реактивных самолетов достигает почти километра в секунду (км/с), а космических кораблей — даже больше 10 км/с. Но ни одно тело не может двигаться со скоростью, превышающей скорость света в вакууме, которая равна примерно 300 000 км/с.

Для измерения скорости автомобилей и мотоциклов используют спидометры 1 (рис. 3.4-3.6). Они показывают обычно скорость в километрах в час (км/ч). Вы, наверное, замечали, что во время движения автомобиля стрелка спидомстра обычно «покачивается». Дело в том, что скорость автомобиля при движении обычно изменяется.

204428

Масса

Каждое физическое тело имеет определенную массу. Массы двух тел можно сравнить, измерив, как изменяются их скорости при взаимодействии друг с другом: скорость тела большей массы изменяется меньше, чем скорость тела меньшей массы.

Например, на рис. 3.7 схематически показано столкновение, футбольного и теннисного мячей (цифры обозначают положение мячей в три последовательных момента времени). Мы видим, что при столкновении скорость футбольного мяча изменилась намного меньше, чем скорость теннисного. Значит, масса футбольного мяча намного больше массы теннисного мяча.

204431

Далее мы расскажем о намного более простом способе измерения массы тел, который обычно и используют на практике.

Единицей массы в S1 является 1 килограмм (кг). Это примерно масса одного литра воды. Международный эталон килограмма представляет собой металлический цилиндр из специального сплава.

Сила

Мерой взаимодействия тел является сила: чем больше сила, действующая на тело, тем больше изменяется скорость этого тела за 1 с. Сила является векторной величиной: ее задают числовым значением и направлением. На рисунках силу обозначают стрелкой, начало которой находится в точке приложения силы.

Чтобы вы представили себе, что такое сила в 1 Н, приведем пример: когда вы держите полное ведро воды, то прикладываете к нему силу, равную примерно 100 Н. При этом приложенная вами сила уравновешивает силу, с которой Земля притягивает то же самое ведро с водой.

Силу, с которой Земля притягивает предметы, называют силой тяжести. В многочисленных опытах было установлено, что сила тяжести, действующая на тело, пропорциональна его массе.

На рис. 3.9 схематически изображены силы, действующие на тело, подвешенное к динамометру: это сила тяжести со стороны Земли и сила упругости со стороны пружины. Если тело находится в покое, сила упругости уравновешивает силу тяжести, то есть направлена противоположно ей и равна ей по модулю.

204459 d4k2Hp3

Значит, по удлинению пружины в этом случае можно найти значение силы тяжести. А это, в свою очередь, позволяет рассчитать массу тела, поскольку сила тяжести пропорциональна массе тела.

Таким образом, массу тела можно найти с помощью взвешивания. Пружинные весы (рис. 3.10) — это динамометр, шкала которого размечена (проградуирована) так, что она показывает массу подвешенного груза.

Что называется физической величиной

Издавна люди для более точного описания каких-нибудь событий, явлений, свойств тел и веществ используют их характеристики. Например, сравнивая тела, которые нас окружают, мы говорим, что книга меньше, чем книжный шкаф, а конь больше кошки. Это означает, что объем коня больше объема кошки, а объем книги меньше объема шкафа.

Объем — пример физической величины, которая характеризует общее свойство тел занимать ту или иную часть пространства (рис. 1.15, а). При этом числовое значение объема каждого из тел индивидуально.
198067

Рис. 1.15. Для характеристики свойства тел занимать ту или иную часть пространства мы используем физическую величину объем (а, б), для характеристики движения — скорость (б, в)

Общая характеристика многих материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной.

Еще одним примером физической величины может служить известное вам понятие «скорость*. Все движущиеся тела изменяют свое положение в пространстве с течением времени, однако быстрота этого изменения для каждого тела различна (рис. 1.15, б, в). Так, самолет за 1 с полета успевает изменить свое положение в пространстве на 250 м, автомобиль — на 25 м, человек — на 1 м, а черепаха — всего на несколько сантиметров. Поэтому физики и говорят, что скорость — это физическая величина, которая характеризует быстроту движения.

Нетрудно догадаться, что объем и скорость,— это далеко не все физические величины, которыми оперирует физика. Масса, плотность, сила, температура, давление, напряжение, освещенность — это лишь малая часть тех физических величин, с которыми вы познакомитесь, изучая физику.

Что означает измерить физическую величину

Для того чтобы количественно описать свойства какого-либо материального объекта или физического явления, необходимо установить значение физической величины, которая характеризует данный объект или явление.

Значение физических величин получают путем измерений (рис. 1.16— 1.19) или вычислений.
198071

Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу.

Приведем пример из художественной литературы: «Пройдя шагов триста по берегу реки, маленький отряд вступил под своды дремучего леса, извилистыми тропами которого им надо было странствовать на протяжении десяти дней*. (Ж. Верн «Пятнадцатилетний капитан*)

Герои романа Ж. Верна измеряли пройденный путь, сравнивая его с шагом, то есть единицей измерения служил шаг. Таких шагов оказалось триста. В результате измерения было получено числовое значение (триста) физической величины (пути) в избранных единицах (шагах).

198077

Рис. 1.20. Если бабушка и внук будут измерять расстояние в шагах. то они всегда будут получать разные результаты

Очевидно, что выбор такой единицы не позволяет сравнивать результаты измерений, полученные разными людьми, поскольку длина шага у всех разная (рис. 1.20). Поэтому ради удобства и точности люди давным-давно начали договариваться о том, чтобы измерять одну и ту же физическую величину одинаковыми единицами. Ныне в большинстве стран мира действует принятая в I960 году Международная система единиц измерения, которая носит название «Система Интернациональная* (СИ) (рис. 1.21).

В этой системе единицей длины является метр (м), времени — секунда (с); объем измеряется в метрах кубических (м3), а скорость — в метрах в секунду (м/с). Об остальных единицах СИ вы узнаете позже.

Кратные и дольные единицы

Из курса математики вы знаете, что для сокращения записи больших и малых значений разных величин пользуются кратными и дольными единицами.

Кратные единицы — это единицы, которые больше основных единиц в 10, 100, 1000 и более раз.

Дольные единицы — это единицы, которые меньше основных в 10, 100, 1000 и более раз.

Для записи кратных и дольных единиц используют приставки. Например, единицы
198078

Рис. 1.21. Основные единицы Международной системы (СИ)

длины, кратные одному метру,— это километр (1000 м), декаметр (10 м). Единицы длины, дольные одному метру,— это дециметр (0,1 м), сантиметр (0,01 м), микрометр (0,000001 м) и так далее.

В таблице приведены наиболее часто употребляемые приставки.

Приставки, служащие для образования кратных и дольных единиц

198081

Измерительные приборы

Измерение физических величин ученые проводят с помощью измерительных приборов. Простейшие из них — линейка, рулетка — служат для измерения расстояния и линейных размеров тела. Вам также хорошо известны такие измерительные приборы, как часы — прибор для измерения времени, транспортир — прибор для измерения углов на плоскости, термометр — прибор для измерения температуры и некоторые другие (рис. 1.22, с. 20). Со многими измерительными приборами вам еще предстоит познакомиться.

Большинство измерительных приборов имеют шкалу, которая обеспечивает возможность измерения. Кроме шкалы, на приборе указывают единицы, в которых выражается измеренная данным прибором величина*.

По шкале можно установить две наиболее важные характеристики прибора: пределы измерения и цену деления.

Пределы измерения — это наибольшее и наименьшее значения физической величины, которые можно измерить данным прибором.

198087В наши дни широко используются электронные измерительные приборы, в которых значение измеренных величин высвечивается на экране в виде цифр. Пределы измерения и единицы определяются по паспорту прибора или устанавливаются специальным переключателем на панели прибора.

198091

Цена деления — это значение наименьшего деления шкалы измерительного прибора.

Например, верхний предел измерений медицинского термометра (рис. 1.23) равен 42 °С, нижний — 34 °С, а цена деления шкалы этого термометра составляет 0,1 °С.

Напоминаем: чтобы определить цену деления шкалы любого прибора, необходимо разность двух любых значений величин, указанных на шкале, разделить на количество делений между ними.

Общая характеристика материальных объектов или явлений, которая может приобретать индивидуальное значение для каждого из них, называется физической величиной.

Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу.

В результате измерений мы получаем значение физических величин.

Говоря о значении физической величины, следует указать ее числовое значение и единицу.

Для измерения физических величин пользуются измерительными приборами.
198097

Для сокращения записи числовых значений больших и малых физических величин используют кратные и дольные единицы. Они образуются с помощью приставок.

Точность измерений

Теперь вы знаете, что означает измерить физическую величину. И в повсе дневной жизни вам уже приходилось выполнять множество простейших измерений. Но насколько точными были ваши измерения? Можно ли получить абсолютно точное значение физической величины?

Попробуем разобраться в этих непростых вопросах.

Оцениваем размеры и проверяем результат:

Начнем с проверки вашего глазомера.

Оцените на глаз длину иглы, изображенной на рис 1.24. А теперь давайте проверим, насколько результат вашей оценки соответствует действительности, то есть измерим длину той же иглы с помощью линейки. Для этого:

Мы видим, что он расположен возле отметки 5 см. Отсюда делаем вывод, что длина иглы около 5 см. Если результат вашей предварительной оценки совпадает с этим значением, то у вас хороший глазомер. Определить на глаз размер более точно нам не удастся.

Результат измерений:

Если нам нужен более точный результат, придется обратить внимание на то, что кончик иглы немного более чем на два миллиметра выступает за отметку 5 см. Итак, более точная длина иглы — 5,2 см, или 52 мм.

Вы можете возразить, что это тоже неточно.

Да, неточно! Именно поэтому принято всегда указывать точность, с которой выполнено измерение.

198110

198114

В первом случае наше измерение выполнено с точностью до 1 см, а во втором — с точностью до 0,1 см.

Чтобы произвести еще более точное измерение, необходимо учесть длину той части иглы, которая выступает за отметку 52 мм, и тогда точность повысится до 0,01 см. Но для этого нам придется использовать измерительный прибор с еще меньшей ценой деления, то есть более точный, но даже тогда мы не можем утверждать, что измерили иглу совершенно точно.

Причин для этого достаточно: это и несовершенство конструкции прибора, и погрешности, которые возникают при проведении опыта (например, начало иглы невозможно абсолютно точно совместить с «нулем» линейки). Таким образом, даже если измерение проводится более тщательно и с помощью более совершенного прибора, точность возрастает, но погрешностей все равно не избежать.

Чтобы уменьшить погрешность, измерение можно выполнить несколько раз, а затем вычислить среднее значение всех полученных результатов (наити их среднее арифметическое).

Точность измерений

198120

Однако не следует думать, что чем точнее измерение, тем лучше: излишняя точность не всегда целесообразна.

Предположим, что вместо длины иглы вам необходимо измерить длину крышки стола. В этом случае нет необходимости учитывать десятые и сотые доли миллиметра, поскольку, измеряя длину стола в разных местах, мы получим величины, отличающиеся на несколько миллиметров. Поэтому долями миллиметра в этом случае можно пренебречь. Также нет смысла измерять длину стены с точностью до одного миллиметра (рис. 1.26).

Из этого можно сделать вывод, что необходимую точность измерения определяет цель эксперимента.

Чаще всего важно не значение погрешности, а то, какую часть от всей измеренной величины составляет возможная погрешность.

Если портной, выкраивая брюки, ошибется на 1 мм, вы этого даже не заметите. А вот если, втягивая нить в ушко иглы, он всякий раз будет ошибаться на 1 мм (рис. 1.27), то едва ли брюки вообще когда-либо будут сшиты.

Роль измерений в физике. Прямые и косвенные измерения

Наука начинается с тех пор, как начинают измерять. Д. И. Менделеев

Вдумайтесь в слова известного ученого. Из них ясна роль измерений в любой науке, особенно в физике. Но, кроме того, измерения важны в практической жизни. Можете ли вы представить свою жизнь без измерений времени, массы, длины, скорости движения, расхода электроэнергии и т. д.?

Как измерить физическую величину? Для этой цели используются измерительные приборы. Некоторые из них вам уже известны. Это разного вида линейки, часы, термометры, весы, транспортиры и др.

Измерительные приборы бывают цифровые и шкальные. В цифровых приборах результат измерений определяется цифрами. Это электронные приборы — часы, термометр, счетчик электроэнергии (рис. 19) и др.

232384

Линейка, стрелочные часы, термометр бытовой, весы, транспортир (рис. 20) — это шкальные приборы. Они имеют шкалу. По ней определяется результат измерений. Вся шкала расчерчена штрихами на деления (рис. 21). Одно деление это не один штрих, как иногда ошибочно считают некоторые учащиеся, а промежуток между двумя ближайшими штрихами. На рисунке 22 на шкале мензурки от значения 10 мл до значения 20 мл два деления, но три штриха. Приборы, которые мы будем использовать в лабораторных работах, в основном шкальные.

232418

232436232439

Что значит измерить физическую величину? Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу. Например, чтобы измерить длину отрезка прямой между точками A и В, нужно приложить линейку и по ее шкале (рис. 23) определить, сколько миллиметров укладывается между точками А и В. Однородной величиной, с которой проводилось сравнение длины отрезка АВ, в данном случае была длина, равная 1 мм.

232455

Если физическая величина измеряется непосредственно путем снятия данных со шкалы прибора, то такое измерение называют прямым. Например, приложив линейку к разным ребрам бруска, мы определим его длину а, ширину b и высоту с (рис. 24, а). Значение длины, ширины и высоты мы определили непосредственно, сняв данные со шкалы линейки. Из рисунка 24, б следует: a = 28 мм. Это прямое измерение.

232463

А как определить объем бруска? Надо провести прямые измерения его длины а, ширины b и высоты с, а затем по формуле

232430

вычислить объем бруска.

В этом случае мы говорим, что объем бруска определили по формуле, т. е. косвенно, и измерение объема называется косвенным измерением.

В физике измерения физических величин чаще всего косвенные. В дальнейшем вы убедитесь в этом сами.

Главные выводы:

Для любознательных:

Изучая строение человеческого тела и работу его органов, ученые проводят множество измерений. Оказывается, в человеке массой примерно 70 кг около 6 л крови. Сердце человека в спокойном состоянии сокращается 60—80 раз в минуту. За одно сокращение оно выбрасывает в среднем 232496крови, в минуту — около 4 л, в сутки — около 6—7 т, в год — более 2000 т. Так что наше сердце — большой труженик!

В течение суток кровь человека около 360 раз проходит через почки, очищаясь там от вредных веществ. Общая протяженность почечных кровеносных сосудов составляет приблизительно 18 км. Ведя здоровый образ жизни, мы помогаем нашему организму работать без сбоев!

Единицы измерения физических величин

Чтобы решить, как быстрее доехать до вокзала — на трамвае или на такси, сравнивают скорости движения этих транспортных средств. Скорость — физическая величина. Она количественно описывает физическое явление — движение. Если скорость автомобиля 232541трактора 232545(рис. 29), то ясно, что автомобиль движется в 3 раза быстрее трактора.

232550

В физике для описания физических явлений и свойств используется множество физических величин: длина, сила, давление и др. Каждая физическая величина имеет символическое обозначение, числовое значение и единицу измерения. Например, длина бруска 232557Здесь длина — физическая величина, 232564 e5Ya08Z— ее символическое обозначение, 2 — числовое значение, м — сокращенное обозначение единицы длины (метра). Символами физических величин обычно являются буквы латинского и греческого алфавитов.

Исторически сложилось так, что у разных народов и государств единицы измерения одних и тех же физических величин различались. Часто это были единицы, соответствующие размерам частей тела человека, массе семени бобов и т. д. Пользоваться такими единицами было неудобно, особенно в торговле между разными государствами.

Например, в Англии для измерения длины использовался фут (1 фут = 30,5 см), а на Руси — аршин (1 аршин = 71,1 см) (рис. 30). Нужно было упорядочить систему единиц, сделать ее удобной в использовании всеми странами. В 1960 г. ввели единую Международную систему единиц (сокращенно СИ — Систему Интернациональную). Ею пользуется большинство стран. Основными единицами в СИ являются: метр (м) — для длины, килограмм (кг) — для массы, секунда (с) — для промежутка времени, Кельвин (К) — для температуры.

232575

Но всегда ли удобно измерять время в секундах, а длину — в метрах? Оказывается, нет. Например, время движения поезда из Минска в Москву измеряют в часах (ч), а путь — в километрах (км). Единицы 1 ч и 1 км — это неосновные (кратные) единицы СИ. Между основными и неосновными единицами существует связь. Так, 1 км = 1000 м, 1 ч = 3600 с.

Основные единицы измерения имеют эталоны. Эталоны хранятся в г. Севре (Франция) в Международном бюро мер и весов. На рисунке 31 приведен эталон килограмма — цилиндр из плати но-иридиевого сплава. По эталону делают копии, которыми пользуются разные страны. Позже вы познакомитесь с эталонами других единиц измерения.

232634

Для любознательных

Эталонная база страны обеспечивает единство измерений и является частью национального достояния. В Беларуси, как и в других странах, ведется работа по исследованию и созданию эталонных комплексов. В Белорусском государственном институте метрологии созданы эталоны массы, времени (см. рис.), температуры и др.

Главные выводы

Пример №1

В одной из книг немецкого путешественника XVII в. есть такие строки: «Шелковая материя, привозимая с Востока, называется русскими «китайкой», и каждый кусок содержит ни больше ни меньше как восемь с четвертью аршин». Сколько метров в куске материи?

259000аршина

1 аршин = 71,1 см = 0,711 м

259007

Так как 1 аршин = 71,1 см = 0,711 м, то длина восьми с четвертью аршин в метрах будет равна:

259017

Ответ: 259020

Действия над физическими величинами

В математике можно складывать, вычитать и сравнивать любые числа. А какие действия можно производить над физическими величинами?

Действия сложения, вычитания и сравнения над физическими величинами можно производить только в том случае, если они однородны, т. е. представляют одну и ту же физическую величину.

Мы можем складывать длину с длиной, вычитать из массы массу, сравнивать промежуток времени с промежутком времени (пример 1). Смешно и нелепо было бы складывать 4 м и 5 кг или вычитать 30 с из 9 кг. А вот умножать и делить можно как однородные, так и разные физические величины.

232727

В примере 2 делятся не только числовые значения (10 : 2 = 5), но и единицы физических величин (кг : кг = 1). Результат показывает, во сколько раз одна физическая величина (масса) больше другой.

232741

В примере 3 умножаются числовые значения 232753и единицы физических величин 232764В результате умножения двух длин 232797получилась новая физическая величина — площадь 232779

232784

В примере 4 в результате деления двух разных физических величин — длины 232793на промежуток времени 232807— получилась новая физическая величина 232813Ее числовое значение равно 5, а единица новой физической величины — 232819 Mwu4Ld9Эта физическая величина 232825— скорость. Подробнее о ней вы узнаете в 3-й главе.

232829

В примере 5 знак равенства относится не только к числовым значениям, но и к единицам. Знак равенства поставить нельзя, если сравнить 232856и 232858Здесь 232863 EU8FyrZ

232866 1CWlWkK

Для любознательных:

Большие единицы времени — год и сутки — дала нам сама природа. Но час, минута и секунда появились благодаря человеку.

Принятое в настоящее время деление суток восходит к глубокой древности. В Вавилоне применялась не десятичная, а шестидесятеричная система счисления. Поскольку 60 делится без остатка на 12, сутки у вавилонян состояли из 12 равных частей. В Древнем Египте было введено деление суток на 24 часа. Позже появились минуты и секунды. То, что в 1 часе 60 минут, а в 1 минуте 60 секунд, — наследие шестидесятеричной системы счисления Вавилона.

Главные выводы:

Пример №2

Выберите значения физических величин, которые можно складывать: 120 г, 232912 2329158 мин, 0,048 кг. Определите значение физической величины, получившейся в результате сложения.

Решение

Однородными физическими величинами в данном случае являются массы тел: 232922= 120 г и 232927= 0,048 кг. Для выполнения операции сложения физические величины необходимо выразить в одних единицах. Одну из масс, например 232929, выразим в единицах, в которых записана масса 232922, т. е. в граммах (г). Так как 1 кг = 1000 г, 232927= 0,048 кг = 0,048 • 1000 г = 48 г.

Следовательно, m = 232922+ 232927= 120 г + 48 г = 168 г.

Ответ: результатом сложения является масса m = 168 г.

Пример №3

Определите физические величины, получившиеся в результате

выполнения следующих действий: 1) 35 г : 5 2329762) 40 см • 0,25 м.

Решение

1) Найдем отношение двух физических величин, разделив их числовые значения и единицы:

232986

Мы получили физическую величину — объем 232994

2) Чтобы умножить две однородные физические величины, необходимо выразить их в одних единицах, например в сантиметрах (см):

232997

Мы получили физическую величину — площадь 233000

Ответ: 1) в результате деления двух физических величин разного рода (массы и плотности) получена третья физическая величина — объем 2330062) в результате умножения двух однородных физических величин (длин) получена третья физическая величина — площадь 233003

физические величины и их измерение

Чем отличается язык физики (и любой другой точной науки) от обычного? язык физики интернационален: он создавался лучшими умами человечества, его однозначно понимают в любом уголке нашей планеты. язык физики объективен: каждое его понятие однозначно, оно имеет один смысл, который может измениться (чаще всего — расшириться) только благодаря опытам. Как и методы научного познания, язык физики родился из практики.

Что такое физическое исследование и каковы его методы

Вспомним, с чего начинается исследовательская работа ученых. Прежде всего — это наблюдение за определенным явлением (телом или материалом) и размышления над его сущностью.

Наблюдение — это восприятие природы с целью получения первичных данных для последующего анализа. Далеко не всегда наблюдения приводят к правильным выводам. Поэтому, чтобы опровергнуть или подтвердить собственные выводы, ученые проводят физические исследования.

Физическое исследование — это целенаправленное изучение явлений и свойств природы средствами физики.

Методы физических исследований
экспериментальный теоретический
Эксперимент — исследование физического явления в условиях, находящихся под контролем исследователя. В своей основе физика является экспериментальной наукой: большинство ее законов основаны на фактах, установленных опытным путем. Анализ данных, полученных в результате экспериментов, формулирование законов природы, объяснение конкретных явлений и свойств на основе этих законов, а главное — предвидение и теоретическое обоснование (с широким использованием математики) еще не известных явлений и свойств.

Какие наблюдения, теоретические и экспериментальные исследования вы провели бы, чтобы исследовать свечение обычной лампы накаливания?

Теоретические исследования проводят не с конкретным физическим телом, а с его идеализированным аналогом — физической моделью, которая должна учитывать только некоторые основные свойства исследуемого тела. Так, изучая движение автомобиля, мы иногда используем его физическую модель — материальную точку (рис. 2.1, а).

Эту модель используют, если размеры тела не существенны для теоретического описания, то есть в модели «материальная точка» учитывается только масса тела, а его форма и размеры во внимание не принимаются. А вот если нужно выяснить, как на движение автомобиля влияет сопротивление воздуха, целесообразно применить уже другую физическую модель — она должна учитывать и форму, и размеры автомобиля (рис. 2.1, б), но может не учитывать, например, размещение пассажиров в салоне. Чем больше выбрано соответствующих параметров для исследования физической системы «автомобиль», тем точнее можно предвидеть «поведение» этой системы.

191091191093

Рис. 2.1. Определяя скорость и время движения автомобиля, можно применять физическую модель «материальная точка» (а); выясняя аэродинамические свойства автомобиля, эту физическую модель применять нельзя (б)

Целесообразно ли использовать физическую модель «материальная точка», если инженеры должны рассчитать устойчивость автомобиля?

Как измерить физическую величину

Описывая, например, движение автомобиля, мы используем определенные количественные характеристики: скорость, ускорение, время движения, силу тяги, мощность и т. п.

Из предыдущего курса физики вы знаете, что количественную меру свойства тела, физического процесса или явления называют физической величиной. Значение физической величины устанавливают в ходе измерений, которые, в свою очередь, бывают прямые и косвенные. При прямых измерениях величину сравнивают с ее единицей (метром, секундой, килограммом, ампером и т. п.) с помощью измерительного прибора, проградуированного в соответствующих единицах (рис. 2.2).

191102193280

Рис. 2.2. Современные приборы для прямого измерения температуры (а); массы (б); скорости движения (в)

Назовите несколько физических величин, значения которых вы находили с помощью прямых измерений. В каких единицах измеряют эти величины? какими приборами? При косвенных измерениях величину вычисляют по результатам прямых измерений других величин, связанных с измеряемой величиной некоторой функциональной зависимостью. Так, чтобы найти среднюю плотность ρ тела, нужно с помощью весов измерить массу m тела, с помощью, например, мензурки измерить его объем V, а затем массу разделить на объем: 191098

Построение системы единиц

В конце XVIII в., после Великой французской революции, перед французскими учеными была поставлена задача создать систему единиц на научной основе. В результате появилась метрическая система единиц. В 1960 г. была создана Международная система единиц CИ, которая со временем стала в мире доминирующей.

Основные единицы СИ

Исторически единицы физических величин связывали с определенными телами или природными процессами. Так, 1 метр был связан с размерами планеты Земля, 1 килограмм — с определенным объемом воды, 1 секунда — с суточным вращением Земли. Позже для каждой единицы был создан эталонсредство (или комплекс средств) для воспроизведения и хранения единицы физической величины. Основные эталоны хранились (и хранятся сейчас) в Международном бюро мер и весов (г. Севр, Франция).

Сейчас все большее распространение получают методы построения системы единиц, основанные на особенностях излучения и распространения электромагнитных волн, а также на фундаментальных физических константах. Рассмотрим основные этапы создания системы единиц на примерах метра и килограмма.

193339

Напомним, что для удобства записи больших и малых значений физических величин используют кратные и дольные единицы. Кратные единицы больше основных единиц в 10, 100, 1000 и более раз. Дольные единицы меньше основных единиц в 10, 100, 1000 и более раз.

Названия кратных и дольных единиц включают в себя специальные префиксы. Например, километр (1000 м, или 103 м) — кратная единица длины, миллиметр (0,001 м, или 10–3 м) — дольная единица длины (см. табл. 1).

Таблица 1. Префиксы для образования названий кратных и дольных единиц

Префикс Символ Множитель
атто- а 193413
фемто- ф 193414
пико- п 193415
нано- н 193417
микро- мк 193418
милли- м 193419
санти- с 193420
кило- к 193421
мега- М 193423
гига- Г 193425
тера- Т 193426
пета п 193428
экса е 193429

Погрешности измерений

При измерении любой физической величины обычно выполняют три последовательные операции: 1) выбор, проверка и установка прибора (приборов); 2) снятие показаний прибора (приборов); 3) вычисление искомой величины по результатам измерений (при косвенных измерениях); 4) оценка погрешности.

Например, нужно измерить на местности расстояние около 5 м. Разумеется, что для этого не следует брать ученическую линейку, — удобнее воспользоваться рулеткой. Все приборы имеют определенную точность. Расстояние в 5 м, как правило, не требуется определять с точностью до миллиметра, поэтому шкала рулетки может и не содержать соответствующих делений.

193431

Рис. 2.3. Штангенциркуль. Точность измерения изображенным прибором — сотые доли миллиметра

А вот если для ремонта лабораторного крана необходимо определить размер шайбы, целесообразно воспользоваться штангенциркулем (см. рис. 2.3). Однако даже с помощью сверхточного прибора нельзя выполнить измерения абсолютно точно. Всегда есть погрешности измеренийотклонение значения измеренной величины от ее истинного значения. Модуль разности между измеренным ( 193452) xизм и истинным (x) значениями измеряемой величины называют абсолютной погрешностью измерения ∆x : 193449

Отношение абсолютной погрешности к измеренному значению измеряемой величины называют относительной погрешностью измерения 193463:

193471, или в процентах: 193475

Погрешности при измерениях бывают случайные и систематические.

Случайные погрешности

Случайные погрешности связаны с процессом измерения: измеряя расстояние рулеткой, невозможно проложить ее идеально ровно; отсчитывая секундомером время, прибор невозможно мгновенно включить и выключить и т. д. Чтобы результаты были более точными, измерения проводят несколько раз и определяют среднее значение измеряемой величины:

193541

где 193548— результаты каждого из N измерений. В данном случае случайную абсолютную погрешность 193554можно определить по формуле:

193556

Если измерение проводилось один раз, будем считать, что случайная погрешность равна половине цены деления шкалы прибора.

Систематические погрешности

Систематические погрешности связаны прежде всего с выбором прибора: невозможно найти рулетку с идеально точной шкалой, идеально равноплечие рычаги и т. п. Систематические погрешности определяются классом точности прибора, поэтому их часто называют погрешностями прибора. В процессе эксплуатации точность приборов может снижаться, поэтому их необходимо периодически калибровать при помощи специального оборудования. Абсолютные погрешности некоторых приборов, используемых в школе, приведены в табл. 2. Если используются другие приборы, будем считать, что абсолютная погрешность прибора равна половине цены деления его шкалы.

Абсолютная погрешность прямого измерения (∆x) учитывает как систематическую погрешность, связанную с прибором (193587), так и случайную погрешность (193590), обусловленную процессом измерения:

193596

Обратите внимание! Приведенные формулы очень упрощены. Ученые используют более сложные методы расчетов погрешностей.

Таблица 2. Абсолютные погрешности некоторых физических приборов

Физический прибор Цена деления шкалы прибора Абсолютная погрешность прибора
Линейка ученическая 1 мм ±1 мм
Лента измерительная 0,5 см ±0,5 см
Штангенциркуль 0,1 мм ±0,05 мм
Цилиндр измерительный 1 мл ±1 мл
Секундомер 0,2 с ±1 с за 30 мин
Динамометр учебный 0,1 Н ±0,05 Н
Термометр лабораторный 1 °С ±1 °С

Как определить погрешности косвенных измерений

Многие физические величины невозможно измерить непосредственно. Их косвенное измерение включает два этапа: 1) методом прямых измерений находят значения определенных величин, например x, y; 2) по соответствующей формуле вычисляют искомую величину f. Как в таком случае определить абсолютную ∆f и относительную 193792погрешности?

193803

Таблица 3. Некоторые формулы для определения относительной погрешности

Функциональная зависимость Относительная погрешность
193840 193957
193843 193960
193847 193965
193851
193854 193968

Как правильно записать результаты

Абсолютная погрешность эксперимента определяет точность, с которой имеет смысл вычислять измеряемую величину. Абсолютную погрешность ∆x обычно округляют до одной значащей цифры с завышением, а результат измерения xизм — до величины разряда, оставшегося после округления в абсолютной погрешности. Окончательный результат х записывают в виде:

193977

Абсолютная погрешность — положительная величина, поэтому 193989наибольшее вероятное значение измеряемой величины, 193994— ее наименьшее вероятное значение (рис. 2.4).

193985

Рис. 2.4. Абсолютная погрешность измерения определяет интервал, в котором находится истинное значение измеряемой величины

Пример. Пусть измеряли ускорение свободного падения (g). После обработки экспериментальных данных получили: 193999. Абсолютную погрешность следует округлить до одной значащей цифры с завышением: 194002. Тогда результат измерения округляется до того же разряда, что и разряд погрешности, то есть до десятых: 194005. Ответ по итогам эксперимента следует представить в виде: 194007. Соответственно истинное значение ускорения свободного падения находится в интервале от 194009(рис. 2.5).

194017

Рис. 2.5. Табличное значение: 194021— принадлежит интервалу [9,5; 9,9] 194027, поэтому можно сказать, что результат эксперимента ( 194033=9,7 194029) совпал с табличным в пределах погрешности измерений

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью
Добавить комментарий

Adblock
detector