Объемная геометрия как называется

fashion 1031469 1920 Советы на день
Содержание
  1. 61. Стереометрия Читать 0 мин.
  2. 61.26. Основные стереометрические фигуры
  3. Объемная геометрия как называется
  4. Построение сечений в стереометрии
  5. Взаимное расположение прямых и плоскостей в стереометрии
  6. Теорема о трех перпендикулярах
  7. Двугранный угол
  8. Симметрия фигур
  9. Призма
  10. Параллелепипед
  11. Пирамида
  12. Правильная пирамида
  13. Формулы для объема и площади пирамиды
  14. Тетраэдр
  15. Прямоугольная пирамида
  16. Усечённая пирамида
  17. Формулы для усеченной пирамиды
  18. Пирамида и шар (сфера)
  19. Пирамида и конус
  20. Пирамида и цилиндр
  21. Сфера и шар
  22. Многогранники и сфера
  23. Объем и площадь поверхности шара
  24. Шаровой сегмент, слой, сектор
  25. Шаровой сегмент
  26. Шаровой слой
  27. Шаровой сектор
  28. Цилиндр
  29. Цилиндр и призма
  30. Цилиндр и сфера
  31. Объем и площадь боковой и полной поверхностей цилиндра
  32. Конус
  33. Объем и площадь боковой и полной поверхностей конуса
  34. Усеченный конус
  35. Формулы для усеченного конуса:
  36. Конус и сфера
  37. Конус и пирамида
  38. Как успешно подготовиться к ЦТ по физике и математике?
  39. Нашли ошибку?

61. Стереометрия ico wristwatchЧитать 0 мин.

61.26. Основные стереометрические фигуры

Среди огромного множества объемных фигур можно выделить три большие группы:

b8fb5ae1e0f22f4a8ebbf63da5fd71d4 filename

ПРИЗМЫ:

Примеры:

4138c7b0b7791e2c79a0a905408d2625 filename

7f9ecd77f6155154fc27534a63b62141 filename

62f0912e4e391a77768c51b9eaf1e456 filename

Элементы призмы:

b6153e40bf4a5784c64191a11b05bb26 filename

Два n − угольника являются основаниями призмы (ABCD), параллелограммы − боковыми гранями (AB B₁A₁).

Стороны граней называются ребрами призмы (например, AD), а концы ребер − вершинами призмы (например, D).

Виды призм:

Прямая призма

призма, боковые ребра которой перпендикулярны плоскостям оснований.

Наклонная призма

призма, боковые ребра которой являются наклонными к плоскостям оснований.

1af80caffdad6bec6d97daa8631d69a9 filename

$ABCA_1B_1C_1$– прямая треугольная призма

653a0476f1e98f421b9e2a4028d708ec filename

$ABCA_1B_1C_1$– наклонная треугольная призма

Свойства призмы:

Для прямой призмы высотой будет является любое из боковых ребер.

f4585bffdee4bbc9811e33aac05faeee filename

0bdbdb931ee4ee642d10523fc40466fa filename

$ABCDA_1B_1C_1D_1$ — произвольная призма.

$ABCDA_1B_1C_1D_1$ — прямая призма.

8acb48a58ac28b94455d265abc2ffaf7 filename

Площадь боковой поверхности прямой призмы:

где P — периметр перпендикулярного сечения, h — высота. То есть:

Особенные призмы:

73e21550a30a401bce395899843a13f4 filename

fae180c3815d4159049d46e72fb30582 filename

Все грани – прямоугольники.

Все грани − квадраты.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

где a, b, c − длины ребер, выходящих из одной вершины, d − диагональ параллелепипеда.

Квадрат диагонали куба равен квадрату его ребра, умноженному на 3:

где a − длина ребра куба.

Площадь поверхности куба можно найти по формуле:

Объем прямоугольного параллелепипеда находят по формуле

Объем куба можно найти по формуле:

ПИРАМИДЫ:

n-угольная пирамида – многогранник, одна грань которого – n-угольник, а остальные грани − треугольники с общей вершиной.

Примеры:

c6b664d0677e120731c2e79f77f9609e filename

bcb4829bf84618ab89121e114a4eb0a3 filename

6114bbfaa915e5ca2af7830ddd9d467b filename

Элементы пирамиды:

831cb9e07bf81e67ab7e5818030f4ffa filename

n-угольник называется основанием пирамиды (ABCD), а треугольники − боковыми гранями (например, SBC).

Особенные пирамиды:

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, а высота опускается в центр вписанной и описанной окружности многоугольника, лежащего в основании пирамиды. В правильной пирамиде обязательно равны между собой ребра основания, и равны между собой боковые ребра. Но не обязательно боковое ребро равно ребру в основании.

Усеченная пирамида – многогранник, вершинами которого служат вершины основания пирамиды и вершины её сечения плоскостью, параллельной основанию пирамиды. Основания усеченной пирамиды − подобные многоугольники.

Свойства пирамиды:

85ed8c35ab4b6aa76ed024cf2e85c231 filename

b023e7b510d6e08210cdf6f0d254dc95 filename

О – центр вписанной окружности

О – центр описанной окружности

72c779444460b538606816bb32417d47 filename

Площадь боковой поверхности правильной пирамиды можно найти по одной формуле

42f431524beedc2487b896d578bddfd5 filename

Если ABCD — произвольная пирамида, то

Если ABCD — правильная пирамида, то

ТЕЛА ВРАЩЕНИЯ:

Цилиндр – фигура, полученная в результате вращения прямоугольника вокруг одной из его сторон.

Элементы цилиндра:

47309d3c795c8a9e0e59d64557d2eb54 filename

l (AB, CD) – образующая

Свойства цилиндра:

Любое сечение цилиндра, параллельное его основанию – круг, равный основанию цилиндра.

Сечение цилиндра, наклонное к его оси и основанию – эллипс.

Боковая поверхность равна:

где R − радиус основания, h − высота, l − образующая цилиндра.

Конус – фигура, полученная в результате вращения прямоугольного треугольника вокруг одного из катетов.

Элементы конуса:

3ae767f692de8b8f971c64db3ee40a9e filename

− ось вращения и высота

ABC − осевое сечение конуса, полученного вращением треугольника ABC вокруг его стороны

Свойства конуса:

Любое сечение конуса, параллельное его основанию – круг, подобный основанию конуса.

Сечение конуса, наклонное к его основанию и не проходящее через вершину – эллипс.

Боковая поверхность равна:

где R − радиус основания, l − образующая конуса.

Сфера – фигура, полученная в результате вращения полуокружности вокруг ее диаметра.

Шар – фигура, полученная вращением полукруга вокруг его диаметра.

Свойства шара и сферы:

5766d8d738698dec6f498ca3bfaf706a filename

Сечение шара плоскостью, проходящей через его центр, называется большим кругом (круг радиуса R).

Источник

Объемная геометрия как называется

Некоторые определения:

Аксиомы стереометрии:

Следствия из аксиом стереометрии:

Построение сечений в стереометрии

Для решения задач по стереометрии остро необходимо умение строить на рисунке сечения многогранников (например, пирамиды, параллелепипеда, куба, призмы) некоторой плоскостью. Дадим несколько определений, поясняющих, что такое сечение:

Для построения сечения пирамиды (призмы, параллелепипеда, куба) можно и нужно построить точки пересечения секущей плоскости с ребрами пирамиды (призмы, параллелепипеда, куба) и соединить каждые две из них, лежащие в одной грани. Заметим, что последовательность построения вершин и сторон сечения не существенна. В основе построения сечений многогранников лежит две задачи на построение:

Для построения прямой, по которой пересекаются некоторые две плоскости α и β (например, секущая плоскость и плоскость грани многогранника), нужно построить две их общие точки, тогда прямая, проходящая через эти точки, есть линия пересечения плоскостей α и β.

Для построения точки пересечения прямой l и плоскости α нужно построить точку пересечения прямой l и прямой l1, по которой пересекаются плоскость α и любая плоскость, содержащая прямую l.

Взаимное расположение прямых и плоскостей в стереометрии

Определение: В ходе решения задач по стереометрии две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Если прямые а и b, либо AB и CD параллельны, то пишут:

311

Несколько теорем:

Возможны три случая взаимного расположения прямой и плоскости в стереометрии:

Определение: Прямая и плоскость называются параллельными, если они не имеют общих точек. Если прямая а параллельна плоскости β, то пишут:

312

Теоремы:

314

313

Если две различные прямые лежат в одной плоскости, то они либо пересекаются, либо параллельны. Однако, в пространстве (т.е. в стереометрии) возможен и третий случай, когда не существует плоскости, в которой лежат две прямые (при этом они и не пересекаются, и не параллельны).

Определение: Две прямые называются скрещивающимися, если не существует плоскости, в которой они обе лежат.

Теоремы:

Теперь введем понятие угла между скрещивающимися прямыми. Пусть a и b – две скрещивающиеся прямые. Возьмем произвольную точку O в пространстве и проведем через нее прямые a1 и b1, параллельные прямым a и b соответственно. Углом между скрещивающимися прямыми a и b называется угол между построенными пересекающимися прямыми a1 и b1.

Однако на практике точку O чаще выбирают так, чтобы она принадлежала одной из прямых. Это обычно не только элементарно удобнее, но и рациональнее и правильнее с точки зрения построения чертежа и решения задачи. Поэтому для угла между скрещивающимися прямыми дадим такое определение:

Определение: Пусть a и b – две скрещивающиеся прямые. Возьмем произвольную точку O на одной из них (в нашем случае, на прямой b) и проведем через неё прямую параллельную другой из них (в нашем случае a1 параллельна a). Углом между скрещивающимися прямыми a и b называется угол между построенной прямой и прямой, содержащей точку O (в нашем случае это угол β между прямыми a1 и b).

315

Определение: Две прямые называются взаимно перпендикулярными (перпендикулярными), если угол между ними равен 90°. Перпендикулярными могут быть как скрещивающиеся прямые, так и прямые лежащие и пересекающиеся в одной плоскости. Если прямая a перпендикулярна прямой b, то пишут:

316

Определение: Две плоскости называются параллельными, если они не пересекаются, т.е. не имеют общих точек. Если две плоскости α и β параллельны, то, как обычно, пишут:

317

Теоремы:

Определение: Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости. Если прямая a перпендикулярна плоскости β, то пишут, как обычно:

318

Теоремы:

319

Следствие: Все четыре диагонали прямоугольного параллелепипеда равны между собой.

Теорема о трех перпендикулярах

Пусть точка А не лежит на плоскости α. Проведем через точку А прямую, перпендикулярную плоскости α, и обозначим буквой О точку пересечения этой прямой с плоскостью α. Перпендикуляром, проведенным из точки А к плоскости α, называется отрезок АО, точка О называется основанием перпендикуляра. Если АО – перпендикуляр к плоскости α, а М – произвольная точка этой плоскости, отличная от точки О, то отрезок АМ называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок ОМ – ортогональная проекция (или, короче, проекция) наклонной АМ на плоскость α. Теперь приведем теорему, которая играет важную роль при решении многих задач.

320

Теорема 1 (о трех перпендикулярах): Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной. Верно и обратное утверждение:

Теорема 2 (о трех перпендикулярах): Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость. Данные теоремы, для обозначений с чертежа выше можно кратко сформулировать так:

321

Теорема: Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то:

Определения расстояний объектами в пространстве:

Определение: В стереометрии ортогональной проекцией прямой a на плоскость α называется проекция этой прямой на плоскость α в случае, если прямая, определяющая направление проектирования, перпендикулярна плоскости α.

322

Замечание: Как видно из предыдущего определения, проекций бывает много. Другие (кроме ортогональной) проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости. Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах. А называть ортогональную проекцию будем просто проекцией (как на чертеже).

Определение: Углом между прямой, не перпендикулярной плоскости, и этой плоскостью называется угол между прямой и ее ортогональной проекцией на данную плоскость (угол АОА’ на чертеже выше).

Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости.

Двугранный угол

Определения:

323

Таким образом, линейный угол двугранного угла – это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла.

Двугранный угол называется прямым (острым, тупым), если его градусная мера равна 90° (меньше 90°, больше 90°). В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию:

324

Определения:

Теоремы:

Симметрия фигур

Определения:

Призма

Определения:

325

Свойства и формулы для призмы:

326

где: Sосн – площадь основания (на чертеже это, например, ABCDE), h – высота (на чертеже это MN).

327

329

где: Sсеч – площадь перпендикулярного сечения, l – длина бокового ребра (на чертеже ниже это, например, AA1 или BB1 и так далее).

330

где: Pсеч – периметр перпендикулярного сечения, l – длина бокового ребра.

328

Виды призм в стереометрии:

332

331

где: Pосн – периметр основания прямой призмы, l – длина бокового ребра, равная в прямой призме высоте (h). Объем прямой призмы находится по общей формуле: V = Sоснh = Sоснl.

333

Свойства правильной призмы:

Параллелепипед

Определение: Параллелепипед – это призма, основания которой параллелограммы. В этом определении ключевым словом является «призма». Таким образом, параллелепипед – это частный случай призмы, которая отличается от общего случая только тем, что в основании у нее не произвольный многоугольник, а именно параллелограмм. Поэтому все приведенные выше свойства, формулы и определения касающиеся призмы остаются актуальными и для параллелепипеда. Однако, можно выделить несколько дополнительных свойств характерных для параллелепипеда.

334

Другие свойства и определения:

336

335

338

339

337

Пирамида

Определения:

340

341

Еще один стереометрический чертеж с обозначениями для лучшего запоминания (на рисунке правильная треугольная пирамида):

342

Если все боковые ребра (SA, SB, SC, SD на чертеже ниже) пирамиды равны, то:

343

Важно: Также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом (углы DMN, DKN, DLN на чертеже ниже равны), то:

345

где: P – периметр основания, a – длина апофемы.

344

Важно: Также верно и обратное, то есть если в основание пирамиды можно вписать окружность, причем вершина пирамиды проецируется в её центр, то все боковые грани наклонены к плоскости основания под одним углом и высоты боковых граней (апофемы) равны.

Правильная пирамида

Определение: Пирамида называется правильной, если её основанием является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами:

346

Важное замечание: Как видим правильные пирамиды являются одними из тех пирамид к которым относятся свойства, изложенные чуть выше. Действительно, если основание правильной пирамиды – это правильный многоугольник, то центр его вписанной и описанной окружностей совпадают, а вершина правильной пирамиды проецируется именно в этот центр (по определению). Однако важно понимать, что не только правильные пирамиды могут обладать свойствами, о которых говорилось выше.

Формулы для объема и площади пирамиды

Теорема (об объеме пирамид, имеющих равные высоты и равные площади оснований). Две пирамиды, имеющие равные высоты и равные площади оснований, имеют равные объемы (Вы конечно, наверняка уже знаете формулу для объема пирамиды, ну или видите ее несколькими строчками ниже, и Вам кажется это утверждение очевидным, но на самом деле, если судить «на глаз», то данная теорема не так уж и очевидна (см. рисунок ниже). Это относится кстати и к другим многогранникам и геометрическим фигурам: их внешний вид обманчив, поэтому, действительно – в математике нужно доверять только формулам и правильным расчетам).

347

348

где: Sосн – площадь основания пирамиды, h – высота пирамиды.

349

350

Тетраэдр

Определения:

351

На чертеже изображен правильный тетраэдр, при этом треугольники ABC, ADC, CBD, BAD – равны. Из общих формул для объема и площадей пирамиды, а также знаний из планиметрии не сложно получить формулы для объема и площадей правильного тетраэдра (а – длина ребра):

352

Прямоугольная пирамида

Определение: При решении задач по стереометрии, пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В таком случае, это ребро и является высотой пирамиды. Ниже примеры треугольной и пятиугольной прямоугольных пирамид. На рисунке слева SA – ребро, являющееся одновременно высотой.

353

Усечённая пирамида

Определения и свойства:

354

Формулы для усеченной пирамиды

Объём усечённой пирамиды равен:

355

356

где: S1 и S2 – площади оснований, h – высота усечённой пирамиды. Однако на практике, удобнее искать объем усеченной пирамиды так: можно достроить усечённую пирамиду до пирамиды, продлив до пересечения боковые рёбра. Тогда объём усечённой пирамиды можно найти, как разность объёмов всей пирамиды и достроенной части. Площадь боковой поверхности также можно искать как разность между площадями боковой поверхности всей пирамиды и достроенной части. Площадь боковой поверхности правильной усечённой пирамиды равна полупроизведению суммы периметров её оснований и апофемы:

357

где: P1 и P2 – периметры оснований правильной усеченной пирамиды, а – длина апофемы. Площадь полной поверхности любой усеченной пирамиды, очевидно, находится как сумма площадей оснований и боковой поверхности:

358

Пирамида и шар (сфера)

Теорема: Около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит вписанный многоугольник (т.е. многоугольник около которого можно описать сферу). Данное условие является необходимым и достаточным. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им.

359

Замечание: Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу. Однако, список пирамид около которых можно описать сферу не исчерпывается этими типами пирамид. На чертеже справа, на высоте SH надо выбрать точку О, равноудалённую от всех вершин пирамиды: SO = = = OD = OA. Тогда точка О – центр описанного шара.

Теорема: В пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Замечание: Вы, очевидно, не поняли того, что прочитали строчкой выше. Однако, главное запомнить, что любая правильная пирамида является такой, в которую можно вписать сферу. При этом список пирамид, в которые можно вписать сферу не исчерпывается правильными.

Определение: Биссекторная плоскость делит двугранный угол пополам, а каждая точка биссекторной плоскости равноудалена от граней, образующих двугранный угол. На рисунке справа плоскость γ является биссекторной плоскостью двугранного угла, образованного плоскостями α и β.

360

На стереометрическом чертеже ниже изображен шар вписанный в пирамиду (или пирамида описанная около шара), при этом точка О – центр вписанного шара. Данная точка О равноудалена от всех граней шара, например:

361

Пирамида и конус

В стереометрии конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие).

362

Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой (необходимое и достаточное условие).

363

Важное свойство: Высоты у таких конусов и пирамид равны между собой.

Пирамида и цилиндр

Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.

364

Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды – вписанный многоугольник (необходимое и достаточное условие).

365

Сфера и шар

Определения:

Теоремы:

Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра (на рис. A и B), можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов.

366

Определения:

367

Теоремы:

Многогранники и сфера

Определение: В стереометрии многогранник (например, пирамида или призма) называется вписанным в сферу, если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника (пирамиды, призмы). Аналогично: многогранник называется вписанным в шар, если все его вершины лежат на границе этого шара. При этом шар называется описанным около многогранника.

Важное свойство: Центр сферы, описанной около многогранника, находится на расстоянии, равном радиусу R сферы, от каждой вершины многогранника. Приведем примеры вписанных в сферу многогранников:

368

Определение: Многогранник называется описанным около сферы (шара), если сфера (шар) касается всех граней многогранника. При этом сфера и шар называются вписанными в многогранник.

369

Важно: Центр сферы, вписанной в многогранник, находится на расстоянии, равном радиусу r сферы, от каждой из плоскостей, содержащих грани многогранника. Приведем примеры описанных около сферы многогранников:

370

Объем и площадь поверхности шара

Теоремы:

371

где: R – радиус сферы.

372

Шаровой сегмент, слой, сектор

Шаровой сегмент

В стереометрии шаровым сегментом называется часть шара, отсекаемая секущей плоскостью. При этом соотношение между высотой, радиусом основания сегмента и радиусом шара:

374

373

где: h − высота сегмента, r − радиус основания сегмента, R − радиус шара. Площадь основания шарового сегмента:

375

Площадь внешней поверхности шарового сегмента:

376

Площадь полной поверхности шарового сегмента:

377

Объем шарового сегмента:

378

Шаровой слой

В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Площадь внешней поверхности шарового слоя:

380

379

где: h − высота шарового слоя, R − радиус шара. Площадь полной поверхности шарового слоя:

381

где: h − высота шарового слоя, R − радиус шара, r1, r2 − радиусы оснований шарового слоя, S1, S2 − площади этих оснований. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов.

Шаровой сектор

В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Площадь полной поверхности шарового сектора:

383

382

где: h − высота соответствующего шарового сегмента, r − радиус основания шарового сегмента (или конуса), R − радиус шара. Объем шарового сектора вычисляется по формуле:

384

Цилиндр

Определения:

385

386

Цилиндр и призма

Призма называется вписанной в цилиндр, если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры:

387

Призма называется описанной около цилиндра, если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры:

388

Цилиндр и сфера

Сфера (шар) называется вписанной в цилиндр, если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы (шара). Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, т.е. диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример:

389

Цилиндр называется вписанным в сферу, если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар (сфера) называется описанным около цилиндра. Вокруг любого цилиндра можно описать сферу. Центром описанной сферы также будет служить середина оси цилиндра. Пример:

390

На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы (R), высоту цилиндра (h) и радиус цилиндра (r):

391

Объем и площадь боковой и полной поверхностей цилиндра

Теорема 1 (о площади боковой поверхности цилиндра): Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту:

392

где: R – радиус основания цилиндра, h – его высота. Эта формула легко выводится (или доказывается) на основе формулы для площади боковой поверхности прямой призмы.

Площадью полной поверхности цилиндра, как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра (т.е. просто площадь круга) вычисляется по формуле:

393

Следовательно, площадь полной поверхности цилиндра Sполн. цилиндра вычисляется по формуле:

394

Теорема 2 (об объеме цилиндра): Объем цилиндра равен произведению площади основания на высоту:

395

где: R и h – радиус и высота цилиндра соответственно. Эта формула также легко выводится (доказывается) на основе формулы для объема призмы.

Теорема 3 (Архимеда): Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра:

397

396

Конус

Определения:

398

399

400

Объем и площадь боковой и полной поверхностей конуса

Теорема 1 (о площади боковой поверхности конуса). Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую:

401

где: R – радиус основания конуса, l – длина образующей конуса. Эта формула легко выводится (или доказывается) на основе формулы для площади боковой поверхности правильной пирамиды.

402

Теорема 2 (об объеме конуса). Объем конуса равен одной трети произведения площади основания на высоту:

403

где: R – радиус основания конуса, h – его высота. Эта формула также легко выводится (доказывается) на основе формулы для объема пирамиды.

Усеченный конус

Определения:

404

Формулы для усеченного конуса:

Объем усеченного конуса равен разности объемов полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Объём усечённого конуса вычисляется по формуле:

406

405

где: S1 = πr1 2 и S2 = πr2 2 – площади оснований, h – высота усечённого конуса, r1 и r2 – радиусы верхнего и нижнего оснований усеченного конуса. Однако на практике, всё же удобнее искать объем усеченного конуса как разность объёмов исходного конуса и отсеченной части. Площадь боковой поверхности усеченного конуса также можно искать как разность между площадями боковой поверхности исходного конуса и отсеченной части.

Действительно, площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей полного конуса и конуса, отсекаемого плоскостью, параллельной основанию конуса. Площадь боковой поверхности усеченного конуса вычисляется по формуле:

407

где: P1 = 2πr1 и P2 = 2πr2 – периметры оснований усеченного конуса, l – длина образующей. Площадь полной поверхности усеченного конуса, очевидно, находится как сумма площадей оснований и боковой поверхности:

408

Обратите внимание, что формулы для объема и площади боковой поверхности усеченного конуса получены на основе формул для аналогичных характеристик правильной усеченной пирамиды.

Конус и сфера

Конус называется вписанным в сферу (шар), если его вершина принадлежит сфере (границе шара), а окружность основания (само основание) является сечением сферы (шара). При этом сфера (шар) называется описанной около конуса. Вокруг прямого кругового конуса всегда можно описать сферу. Центр описанной сферы будет лежать на прямой содержащей высоту конуса, а радиус этой сферы будет равен радиусу окружности, описанной около осевого сечения конуса (это сечение является равнобедренным треугольником). Примеры:

409

Сфера (шар) называется вписанной в конус, если сфера (шар) касается основания конуса и каждой его образующей. При этом конус называется описанным около сферы (шара). В прямой круговой конус всегда можно вписать сферу. Её центр будет лежать на высоте конуса, а радиус вписанной сферы будет равен радиусу окружности, вписанной в осевое сечение конуса (это сечение является равнобедренным треугольником). Примеры:

410

Конус и пирамида

Примечание: Подробнее о том, как в стереометрии конус вписывается в пирамиду или описывается около пирамиды уже говорилось в ранее здесь.

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

vedajdveridub

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Источник

Оцените статью
Добавить комментарий

Adblock
detector