Объемный прямоугольник как называется

girl 1848947 1920 Советы на день

Геометрические фигуры. Параллелепипед.

Параллелепипед — призма, основанием которой является параллелограмм либо (равносильно) многогранник с шестью гранями, являющимися параллелограммами. Шестигранник.

Параллелограммы, из которых состоит параллелепипед являются гранями этого параллелепипеда, стороны этих параллелограммов являются ребрами параллелепипеда, а вершины параллелограммов — вершинами параллелепипеда. У параллелепипеда каждая грань является параллелограммом.

Как правило выделяют любые 2-е противолежащие грани и называют их основаниями параллелепипеда, а оставшиеся грани — боковыми гранями параллелепипеда. Ребра параллелепипеда, которые не принадлежат основаниям являются боковыми ребрами.

2 грани параллелепипеда, которые имеют общее ребро являются смежными, а те, которые не имеют общих ребер — противоположными.

Отрезок, который соединяет 2 вершины, которые не принадлежат 1-ой грани является диагональю параллелепипеда.

Длины ребер прямоугольного параллелепипеда, которые не параллельны, являются линейными размерами (измерениями) параллелепипеда. У прямоугольного параллелепипеда 3 линейных размера.

Типы параллелепипеда.

Существует несколько видов параллелепипедов:

Прямым является параллелепипед с ребром, перпендикулярным плоскости основания.

Прямой параллелепипед с прямоугольником в основании является прямоугольным параллелепипедом. У прямоугольного параллелепипеда каждая из граней является прямоугольником.

170 602d6443724cf5a7979f42a6902cd083

Наклонный параллелепипед — это параллелепипед, у которого боковые грани расположены, по отношению к основаниям, под углом, не равным 90 градусов.

443 36bb629ad646fd658a327f62ce6ae66c

Прямоугольный параллелепипед, у которого все 3 измерения имеют равную величину, является кубом. Каждая из граней куба – это равные квадраты.

Произвольный параллелепипед. Объём и соотношения в наклонном параллелепипеде в основном определяются при помощи векторной алгебры. Объём параллелепипеда равняется абсолютной величине смешанного произведения 3-х векторов, которые определяются 3-мя сторонами параллелепипеда (которые исходят из одной вершины). Соотношение между длинами сторон параллелепипеда и углами между ними показывает утверждение, что определитель Грама данных 3-х векторов равняется квадрату их смешанного произведения.

Свойства параллелепипеда.

В параллелепипед вписывают тетраэдр. Объем этого тетраэдра будет равняться третьей части объема параллелепипеда.

Источник

Что такое параллелепипед: определение, элементы, виды, свойства

В данной публикации мы рассмотрим определение, элементы, виды и основные свойства параллелепипеда, в т.ч. прямоугольного. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.

Определение параллелепипеда

Параллелепипед – это геометрическая фигура в пространстве; шестигранник, гранями которого являются параллелограммы. Фигура имеет 12 ребер и 6 граней.

parallelepiped figura 2

Параллелепипед – это разновидность призмы с параллелограммом в качестве оснований. Основные элементы фигуры те же, что и у призмы.

Примечание: Формулы для расчета площади поверхности (для прямоугольной фигуры) и объема параллелепипеда представлены в отдельных публикациях.

Виды параллелепипедов

Свойства параллелепипеда

1. Противоположные грани параллелепипеда взаимно параллельны и являются равными параллелограммами.

2. Все диагонали параллелепипеда пересекаются в одной точке и в ней делятся пополам.

parallelepiped figura 5

3. Квадрат диагонали (d) прямоугольного параллелепипеда равен сумме квадратов трех его измерений: длины (a), ширины (b) и высоты (c).

parallelepiped figura 4
d 2 = a 2 + b 2 + c 2

Примечание: к параллелепипеду, также, применимы свойства призмы.

Источник

Прямоугольный параллелепипед. Пирамида.

78049

78040

Площадью поверхности параллелепипеда называют сумму площадей всех его граней.

78041

Измерения имеют названия: длина, ширина, высота. Данные названия введены, чтобы различать измерения:

78043

78213

Частным случаем прямоугольного параллелепипеда является куб. Куб — это прямоугольный параллелепипед, все измерения которого равны:

78042

EFHGE1F1H1G1 — куб, его высота, ширина и длина равны. Гранями куба являются 6 равных квадратов.

Рассмотрим следующую фигуру:

78045

Данная фигура состоит из шести прямоугольников, которые попарно равны (выделены одним цветом). Если мы согнём по линиям данную фигуру и склеим, то получим модель прямоугольного параллелепипеда, противоположные грани которого будут одного цвета. Рассматриваемую фигуру называют развёрткой прямоугольного параллелепипеда. Как сказано выше, куб состоит из 6 равных квадратов, значит, его развертка будет иметь следующий вид:

78044

В данном случае куб «разрезали» по 6 горизонтальным ребрам и 1 вертикальному, при этом противоположные грани выделены одним цветом. Таким образом, «разрезая» любой многогранник по ребрам так, чтобы все грани оказались в одной плоскости, можно получить его развертку. Развертки многогранников нужны, например, для создания их объемных моделей.

78048

7167371661

Если мы «разрежем» по боковым рёбрам пятиугольную пирамиду, то получим следующий многоугольник, который будет являться развёрткой данной пирамиды:

78046

Поделись с друзьями в социальных сетях:

Источник

Параллелепипед

Параллелепипед — тело строгих геометрических форм, противоположные грани которого находятся в параллельных плоскостях. Все плоскости, или грани, включая основание, параллелограммы. Научно определение параллелепипеда — призма, основанием которой служит параллелограмм. Часто ученики затрудняются ответить, чем отличается параллелограмм от параллелепипеда. Отличие в том, что параллелограмм — фигура плоская, двухмерная, а параллелепипед — объемное геометрическое тело, протяженное в трех измерениях, имеющее ширину, высоту и длину. Как выглядит параллелепипед, посмотрите на рисунке:

Виды параллелепипеда

Параллелепипед — многогранник. Его ограничивают шесть плоскостей, два основания, и четыре боковые грани. Линии, по которым соединяются грани, называются ребрами, а точки, в которых сходятся три ребра — вершинами. У фигуры 8 вершин.

Если грани имеют общее ребро, то их называют смежными, а те, у которых такого ребра нет — противоположными. Это же касается и вершин, если они не лежат на одной грани, то их тоже называют противоположными. Высота, ширина и длина прямоугольного параллелепипеда называются измерениями, они выходят из одной вершины. Если фигура не прямоугольная, то измерения и ребра не совпадают.

При построении параллелепипеда на рисунке можно провести ряд дополнительных линий, которые помогают при вычислении объема, площади поверхности, неизвестных длин и других параметров. Если линии проходят через противоположные вершины, то их называют диагоналями. У параллелепипеда их насчитывается четыре.

В геометрии выделяют несколько типов параллелепипедов, которые отличаются некоторыми свойствами:

Свойства параллелепипеда

Для всех типов параллелепипедов можно выделить общие свойства, характеризующие фигуру. Таких свойств немного, запомнить их не сложно:

Твердо запомнив эти свойства несложно решить большинство задач школьной геометрии.

Основные формулы параллелепипеда

Кроме свойств этой фигуры нужно запомнить ряд несложных формул. Конечно, в процессе решения задачи можно вывести эти выражения самостоятельно. Но часто на это нет времени, лучше воспользоваться готовыми шаблонами.

Формула площади боковой поверхности прямого параллелепипеда — одна из самых простых. Sбо∙h. В этой формуле только три величины, но одна из них составная:

H – высота параллелепипеда;

Р – периметр, АВ+ВС+АD+ CD.

Воспользоваться такой формулой можно только в том случае, если известны длины сторон основы и высота.

Площадь полной поверхности параллелепипеда определяется по формуле Sп=Sб+2Sо.

Как найти площадь боковой поверхности мы знаем из предыдущего пункта, а площадь Sо рассчитывается в зависимости от вида четырехугольника, лежащего в основании.

Объем прямого параллелепипеда тоже найти несложно, для этого достаточно умножить площадь основания на высоту. Объём V=Sо∙h

Формулы для прямоугольного параллелепипеда тоже не отличаются сложностью:

Sб=2c(a+b) в этой формуле а и b – стороны основания, с – высота, равна длине бокового ребра.

Площадь полной поверхности равна Sп=2(ab+bc+ac);

Объем V=abc, то есть, произведение всех трех измерений.

Когда же приходится вычислять площади и объем произвольного параллелепипеда, то показанные формулы не всегда срабатывают. Необходимо использовать законы векторной геометрии. При вычислении объема параллелепипеда через длину диагонали, необходимо использовать проекции на разные оси. Видимая простота формул — это только основа для сложной работы, требующей пространственного воображения и смекалки.

Источник

Развертка прямоугольного параллелепипеда

5fe4e535ca859140081642

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение параллелепипеда

Параллелепипед — это многогранник, у которого шесть граней.

У параллелепипеда каждая грань представляют собой параллелограмм, противоположные грани которого равны.

5fe4e5a29a78b228435686

Прямоугольный параллелепипед — это многогранник с шестью гранями, каждая из которых является прямоугольником.

Свойства прямоугольного параллелепипеда

Диагональ прямоугольного параллелепипеда — это отрезок, который соединяет две противоположные вершины. Все диагонали равны, пересекаются в одной точке и делятся ею пополам.

5fe4e5373076e501070639

Схема создания прямоугольного параллелепипеда

Для сборки параллелепипеда нужно распечатать развертку на обычном листе формата А4. Для печати можно использовать белую или цветную бумагу.

5fe4e5371e60d031122372

Как сделать развертку прямоугольного параллелепипеда:

Развертка прямоугольного параллелепипеда с размерами

Геометрические размеры параллелепипеда №1:

Прямоугольный параллелепипед с такими размерами выглядит так:

5fe4e5375b42e654332974

Геометрические размеры параллелепипеда №2:

Прямоугольный параллелепипед с такими размерами выглядит так:

5fe4e5370a5b4839316772

Геометрические размеры параллелепипеда №3:

Прямоугольный параллелепипед с такими размерами выглядит так:

5fe4e5374a427466136514

Так выглядит соотношение размеров параллелепипедов для представленных разверток:

5fe4e5368e732087402350

Развертка может пригодиться, если нужно сделать прямоугольный параллелепипед из бумаги или картона на уроке математики в 5 классе. Кроме школьных уроков эти знания пригодятся работникам производств. Например, на заводе по производству упаковки.

Также развертка помогает решать некоторые задачи. Например, находить кратчайшее расстояние между точками на поверхности геометрического тела.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Источник

Оцените статью
Добавить комментарий

Adblock
detector