Обратная функция как решать

suit 690048 1920 Советы на день
Содержание
  1. Взаимно обратные функции, основные определения, свойства, графики
  2. Понятие обратной функции
  3. Нахождение взаимно обратных функций
  4. Основные свойства взаимно обратных функций
  5. Графики взаимно обратных функций
  6. Обратная функция
  7. 1 комментарий
  8. Обратная функция
  9. Что такое обратная функция
  10. Как получить функцию, обратную данной
  11. Свойства обратной функции
  12. Теоремы об обратной функции
  13. Примеры задач
  14. Взаимно обратные функции
  15. Функция, обратная данной
  16. Алгоритм вывода формулы функции, обратной данной
  17. Свойства взаимно обратных функций
  18. Примеры
  19. Как найти обратную функцию
  20. Как узнать, есть ли у функции инверсия?
  21. В поисках обратного
  22. ПРИМЕР 1
  23. ОТВЕЧАТЬ:
  24. ПРИМЕР 2
  25. ОТВЕЧАТЬ:
  26. Подробнее о поиске обратной функции
  27. Как найти обратную квадратичную функцию? Ты можешь?
  28. Как быстро построить график обратных функций
  29. Есть ли способ сделать функцию обратной?

Взаимно обратные функции, основные определения, свойства, графики

Понятие обратной функции

Для чего вообще нам нужно понятие обратных функций?

Нахождение взаимно обратных функций

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Решение

Обе взаимно обратные функции можно отобразить на графике следующим образом:

image012 KCwYqBV

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Решение

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

На графике обе функции будут выглядеть так:

image017

Основные свойства взаимно обратных функций

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

Графики взаимно обратных функций

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

image037

Графики для функций с a > 1 и a 1 будут выглядеть так:

image040

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

image041

График главной ветви косинуса и арккосинуса выглядит так:

image042

График главной ветви арктангенса и тангенса:

image043

График главной ветви арккотангенса и котангенса будет таким:

image044

image047

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Источник

Обратная функция

Что такое обратная функция? Как найти функцию, обратную данной?

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо :

1) В формулу функции вместо y подставить x, вместо x — y:

2) Из полученного равенства выразить y через x:

Найти функцию, обратную функции y=2x-6.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая. Для построения прямой берём две точки.

quicklatex.com d7fa80623853e96d4e8f32fe255e4c99 l3

quicklatex.com c9a8b5feb781d3c105f0903d50e2b586 l3

0 151196 77fee1ca origОднозначно выразить y через x можно в том случае, когда уравнение x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).

Теорема (необходимое и достаточное условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.

Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции — также [0;∞).

quicklatex.com 5cb0e48e5ed4eb65409db2db9a9547d5 l3

quicklatex.com df26532d596e82f8b70ab21d25875987 l3

то есть на промежутке [0;∞) y=√x — функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:

0 1511a9 2675513c orig

В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции.

1 комментарий

Для физических задач говорить об обратной функции, думаю, можно лишь для безразмерных у и х. При различии их размерностей, значит, и осей их графиков, надо для обратной функции поворачивать и оси.
Тогда лучше говорить о выражении аргумента х в явном виде, не упоминая об обратной функции. Значит, надо функцию у=ах/С+в, где х и С имеют, например, одинаковую размерность (например, кг), представить в виде уравнения ах/С+в-у=0. Из него можно выразить в явном виде у или х. Тогда либо у, либо х надо будет считать функцией с собственной координатной осью с собственной размерностью. При этом ось функции обычно является вертикальной.
Вопрос: можно ли считать выраженные в явном виде функции у и х обратными?

Источник

Обратная функция

Что такое обратная функция

Обратной называется такая функция, для которой каждое ее значение (переменная y) определяется одним значением независимой переменной x из некоторого заданного множества X.

Отметим, что не всякая функция является обратимой. Например, к квадратичной зависимости типа y = x 2 невозможно найти обратную функцию, так как два значения независимой переменной x задают одно значение переменной y.

Сформулируем необходимое условие обратимости функции.

К функции f(x) можно найти обратную тогда и только тогда, когда соблюдено каждое из представленных условий:

Как получить функцию, обратную данной

Укажем необходимые для нахождения обратной функции операции:

Свойства обратной функции

Приведем основные свойства обратной функции, используемые при решении задач и построении графиков:

Теоремы об обратной функции

Как было отмечено, функция обратима, если она монотонна на заданном интервале.

Докажем теорему об обратной функции.

Доказательство теоремы: пусть на области X выбраны такие значения, что x1≠x2 и x1 f(x2). Каждое возможное значение переменной x задает одно значение переменной y, и f(x) непрерывно убывает на заданном интервале. Соблюдены все условия обратимости, а значит, функция y=f(x) обратима на множестве X, что и требовалось доказать.

Примеры задач

Функция f(x) — парабола, область определения которой D (f(x))=R. В случае квадратичных функций одному значению функции соответствует пара значений переменной x из множества D(f(x)). Поскольку не выполняется необходимое условие обратимости, функция y = f ( x ) = x 2 + 4 не имеет обратной.

Доказать, что функция y = f ( x ) = x обратима на множестве [0; +∞). Указать обратную к исходной функцию.

На заданной области исходная функция непрерывно возрастает. Любое из значений x ∈ [ 0 ; + ∞ ) определяет одно значение функции, то есть функция обратима.

Источник

Взаимно обратные функции

Функция, обратная данной

По определению (см. §34 справочника для 7 класса)

Функция – это соответствие, при котором каждому значению независимой переменной соответствует единственное значение зависимой переменной.

Пусть некоторое соответствие задано таблицей:

Алгоритм вывода формулы функции, обратной данной

Шаг 2. Из полученной формулы выразить y(x). Искомое выражение для обратной функции найдено.

Шаг 3. Учесть ограничения для области определения и области значений исходной и/или обратной функций.

Шаг 3. Ограничений на x и y нет

Шаг 3. Ограничений на x и y нет

Шаг 3. На исходную функцию накладываются ограничения

Шаг 3. На обратную функцию накладываются ограничения

Исходная функция — парабола получает ограничения из-за обратной функции; только в этом случаи функции будут взаимно обратными.

Свойства взаимно обратных функций

1. Область определения функции f является областью значений функции g, а область значений функции f является областью определения функции g.

2. Функции f и g либо одновременно возрастающие, либо одновременно убывающие.

4. Графики f и g симметричны относительно биссектрисы 1-й четверти y = x.

5. Справедливы тождества f(g(x) ) = x и g(f(x) ) = x.

Графики пар взаимно обратных функций, найденных выше:

algebra p 2 1 algebra p 2 2
algebra p 2 3 algebra p 2 4

Примеры

Пример 1. Задайте формулой функцию, обратную данной.

Меняем аргумент и значение: x = 5y-4

Меняем аргумент и значение: x = 4y+1

$6 \ge x \ge 2,5 \Rightarrow 2,5 \le x \le 6$

Пример 2. Найдите функцию, обратную данной.

Постройте график исходной и обратной функции в одной системе координат.

$x = y^2 \Rightarrow y = \pm \sqrt$

algebra p 2 5

$x = y-3 \Rightarrow y = x+3$

algebra p 2 6

$x = \frac<1> \Rightarrow y = \frac<1> -1$

algebra p 2 7

$x = 1+ \sqrt \Rightarrow y = (x-1)^2+3$

Источник

Как найти обратную функцию

Многие приложения в алгебре и исчислении зависят от знания того, как найти обратную функцию, и это тема данного руководства.

Прежде всего, вам нужно понять, что перед тем, как найти инверсию функции, вы должны убедиться, что такая инверсия существует.

Преимущество метода поиска обратного, который мы будем использовать, заключается в том, что мы найдем обратное и выясним, существует ли оно одновременно.

Готовый?? Тогда пристегнитесь.

function and its inverse

Как узнать, есть ли у функции инверсия?

Технически функция имеет инверсию, когда она взаимно однозначна (инъективна) и сюръективна.

Однако решающим условием является то, что она должна быть взаимно однозначной, потому что функцию можно сделать сюръективной, ограничив ее диапазон своим собственным изображением.

red arrow transpКак узнать, что функция взаимно однозначна?

red check transp Алгебраический путь

Для алгебраического подхода, чтобы функция \(f\) была взаимно однозначной, нам нужно доказать, что каждый раз, когда это \(f(x) = f(y)\), нам нужно иметь это \(x = y\).

Другими словами, нам нужно доказать, что

\[f(x) = f(y) \,\,\Rightarrow \,\, x = y\]

red check transp Графический способ

Для графического способа нам нужно использовать проверка горизонтальной линии : Для любой горизонтальной линии, которую мы рисуем, график функции не более одного раза пересекает эту горизонтальную линию.

Проходит тест горизонтальной линии

passes horizontal line test

Не проходит тест горизонтальной линии

does not pass horizontal line test

В поисках обратного

Чтобы найти обратную функцию для заданной функции \(f(x)\), необходимо решить уравнение.

Действительно, у вас есть уравнение \(f(x) = y\), вы берете \(y\) как заданное число, и вам нужно решить его для \(x\), и вам нужно убедиться, что решение УНИКАЛЬНО.

Теперь о практических шагах:

red check transp Шаг 1: Для заданного \(y\) задайте уравнение:

и решите его для \(x\).

red check transp Шаг 2: Обязательно обратите внимание на то, для какого \(y\) существует действительно уникальное решение.

red check transp Шаг 3: Как только вы решите \(x\) в терминах \(y\), это выражение, которое зависит от \(y\), будет вашим \(f^<-1>(y)\).

red check transp Шаг 4: Измените имя переменной с \(y\) на \(x\), и у вас будет обратная функция \(f^<-1>(x)\).

ПРИМЕР 1

Найдите обратную функцию \(f(x) = \sqrt x\)

ОТВЕЧАТЬ:

Итак, мы берем \(y\) как данное, и нам нужно решить \(f(x) = y\), что в данном случае соответствует решению

Обратите внимание, что квадратный корень всегда неотрицателен, поэтому для решения нам понадобится \(y\ge 0\).

Применяя квадрат к обеим сторонам, получаем, что

\[\Rightarrow \,\, (\sqrt x)^2 = y^2\] \[\Rightarrow \,\, x = y^2\]

Итак, \(f^<-1>(y) = y^2\), переключая имя переменной, мы получаем обратную функцию:

ПРИМЕР 2

ОТВЕЧАТЬ:

Опять же, мы берем \(y\) как дано, и теперь нам нужно решить для \(x\) уравнение \(f(x) = y\). Итак, у нас есть

Итак, \(f^<-1>(y) = \displaystyle \frac<1-y>\), переключая имя переменной, мы получаем обратную функцию:

Подробнее о поиске обратной функции

Одним из важнейших свойств обратной функции \(f^<-1>(x)\) является то, что \(f(f^<-1>(x)) = x\).

Подумайте, о чем это говорит. Что-то вроде: «Функция, вычисленная в обратном порядке, дает вам идентичность».

Или, другими словами, вычисление инверсии через функцию похоже на бездействие с аргументом.

Или, как некоторые любят говорить: функция может каким-то образом отменить обратное.

Вы выбираете свою версию.

Как найти обратную квадратичную функцию? Ты можешь?

quadratic function does not pass

Не пройдя тест горизонтальной линии, мы можем увидеть, что для данного \(y\) существует более одного значения \(x\), так что \(f(x) = y\), поэтому мы не можем «решить» для \(x\), поскольку существует более одного \(x\).

НО, если вы ограничите домен и рассмотрите, скажем, только положительные числа, мы получим следующее:

quadratic function restricted

который проходит проверку горизонтальной линии, и, следовательно, квадратичная функция обратима.

Как быстро построить график обратных функций

Всегда существует требование оценки, является ли функция \(f(x)\) обратимой или нет (проверяя, является ли она взаимно однозначной). Но если предположить, что вы знаете, что это обратимо, есть простой способ найти график обратимости.

red check transpСначала изобразите график данной функции \(f(x)\).

red check transpЗатем нарисуйте линию под углом 45 градусов \(y = x\).

red check transpЧтобы построить график \(f^<-1>(x)\), все, что вам нужно сделать, это отразить график \(f(x)\) через линию \(y = x\) под углом 45 градусов, как зеркало.

См. Пример ниже с функциями \(f(x) = \sin x\) и \(f^<-1>(x) = \arcsin x\).

symmetric with respect

Есть ли способ сделать функцию обратной?

Да, это действительно возможно, но это происходит только для функции идентификации, то есть с \(f(x) = x\).

Источник

Оцените статью
Добавить комментарий

Adblock
detector