Обрезанная пирамида как называется

girl 1848947 1920 Советы на день
Содержание
  1. Геометрические фигуры. Усеченная пирамида.
  2. Свойства усеченной пирамиды.
  3. Формулы для усеченной пирамиды.
  4. Сечение пирамиды плоскостью, параллельной основанию.
  5. Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида
  6. Что такое пирамида в общем случае?
  7. Правильная четырехугольная пирамида
  8. Четыре основных линейных параметра
  9. Площадь и объем фигуры
  10. Свойства правильной усеченной четырехугольной пирамиды
  11. Усеченная пирамида
  12. Урок 28. Геометрия 10 класс ФГОС
  13. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  14. Получите невероятные возможности
  15. Конспект урока «Усеченная пирамида»
  16. Усеченные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности усеченной пирамиды
  17. Усеченные пирамиды
  18. Правильные усеченные пирамиды
  19. Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида
  20. Геометрические представления о фигуре
  21. Правильная пирамида
  22. Сторона основания, высота, боковое ребро и апотема
  23. Объем фигуры
  24. Площадь поверхности
  25. Свойства правильной усеченной пирамиды треугольной

Геометрические фигуры. Усеченная пирамида.

Усеченной пирамидой является многогранник, заключенный меж основанием пирамиды и секущей плоскостью, которая параллельна ее основанию.

Или другими словами: усеченная пирамида — это такой многогранник, который образован пирамидой и ее сечением, параллельным основанию.

767 602d6443724cf5a7979f42a6902cd083

Сечение, которое параллельно основанию пирамиды делит пирамиду на 2 части. Часть пирамиды меж ее основанием и сечением — это усеченная пирамида.

Это сечение для усеченной пирамиды оказывается 1-ним из оснований этой пирамиды.

Расстояние меж основаниями усеченной пирамиды является высотой усеченной пирамиды.

Усеченная пирамида будет правильной, когда пирамида, из которой она была получена, тоже была правильной.

Высота трапеции боковой грани правильной усеченной пирамиды является апофемой правильной усеченной пирамиды.

Свойства усеченной пирамиды.

1. Каждая боковая грань правильной усеченной пирамиды является равнобокими трапециями одной величины.

2. Основания усеченной пирамиды являются подобными многоугольниками.

3. Боковые ребра правильной усеченной пирамиды имеют равную величину и один наклонен по отношению к основанию пирамиды.

4. Боковые грани усеченной пирамиды являются трапециями.

5. Двугранные углы при боковых ребрах правильной усеченной пирамиды имеют равную величину.

Формулы для усеченной пирамиды.

Для произвольной пирамиды:

Объем усеченной пирамиды равен 1/3 произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

955 36bb629ad646fd658a327f62ce6ae66c

h — высота усеченной пирамиды.

Площадь боковой поверхности 621 d65c0b2f59c2b835d14d93c5c2bbb44aравняется сумме площадей боковых граней усеченной пирамиды.

Для правильной усеченной пирамиды:

Правильная усеченная пирамида — многогранник, который образован правильной пирамидой и ее сечением, которое параллельно основанию.

493 136362c2dff3844304dd1e96bd36ee03

Площадь боковой поверхности правильной усеченной пирамиды равна ½ произведения суммы периметров ее оснований и апофемы.

896 ba5d18e65df7d1fef4d9be2fdb185c23

φ — двугранный угол у основания пирамиды.

869 fe09c4cd0a360af0bb420fa7c5ec10b2

CH является высотой усеченной пирамиды, P1 и P2 — периметрами оснований, S1 и S2 — площадями оснований, Sбок — площадью боковой поверхности, Sполн — площадью полной поверхности:

19 47c151a3c319f16ed66ab678d29adda2

Сечение пирамиды плоскостью, параллельной основанию.

Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) разделяет высоту и боковые ребра пирамиды на пропорциональные отрезки.

Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) – это многоугольник, который подобен основанию пирамиды, при этом коэффициент подобия этих многоугольников соответствует отношению их расстояний от вершины пирамиды.

Площади сечений, которые параллельны основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.

Источник

Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

16cbc924d98b86b01e51e9d6b213be31 Вам будет интересно: Литовские статуты: даты и история изданий, регламент, хронология принятия статутов

27ce0bbade73dfc8998493ac2baed6c6

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Правильная четырехугольная пирамида

Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.

683c07dbdc3c562b98f29f9cf44b1c3c

Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).

Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.

Египетские пирамиды в Гизе являются правильными четырехугольными.

Далее приведем формулы, позволяющие определить все характеристики этой фигуры.

Четыре основных линейных параметра

Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.

Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:

Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):

Очевидно, что боковое ребро b всегда больше апофемы ab.

Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.

Площадь и объем фигуры

Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:

Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.

Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:

S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)

Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.

fbad022931637dab86aa757831fec3c5

Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:

То есть V равен третьей части произведения высоты фигуры на площадь ее основания.

Свойства правильной усеченной четырехугольной пирамиды

Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.

6b60d1c678d25659346b57b6eb5c6985

Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.

Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:

V = 1/3 × h × (So1 + So2 + √(So1 × So2))

Источник

Усеченная пирамида

Урок 28. Геометрия 10 класс ФГОС

20210413 vu tg sbscrb2

28

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Усеченная пирамида»

На прошлых уроках мы работали с пирамидами. Давайте вспомним, какой многогранник называется пирамидой, что такое правильная пирамида, вспомним свойства правильной пирамиды.

image003

Пирамида называется правильной, если ее основание – правильный многоугольник.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

image004

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Пусть нам дана пирамида PA1A2…An. Проведем секущую плоскость β, параллельную плоскости основания пирамиды и пусть эта плоскость пересекает боковые ребра в точках B1,B2,…, Bn.

image005

Плоскость β разбивает пирамиду на две фигуры: пирамиду PB1B2…Bn и многогранник. Многогранник, гранями которого являются n-угольники A1A2…An и B1B2…Bn, расположенные в параллельных плоскостях и n четырехугольников A1A2B2B1, A2A3B3B2,…, AnA1B1Bn называется усеченной пирамидой.

Вокруг нас много примеров усеченных пирамид. Вытяжка над кухонной плитой имеет форму усеченной пирамиды.клавиши клавиатуры и другие предметы.

Отрезки A1B1,…, AnBn называются боковыми рёбрами усеченной пирамиды.

Усеченную пирамиду обозначают так A1A2…AnB1B2…Bn. Возьмем на верхнем основании произвольную точку C и из этой точки опустим перпендикуляр на нижнее основание. Этот перпендикуляр называется высотой усеченной пирамиды.

image006

Теперь давайте докажем, что боковые грани усеченной пирамиды – это трапеции.

Для доказательства рассмотрим грань A1A2B2B1. Понятно, что для других боковых граней доказательство будет проводится аналогично.

image007

Поскольку секущая плоскость проводилась параллельно плоскости основания, то можно записать, что A1A2 параллельно B1B2. Очевидно, что две другие стороны четырехугольника A1A2B2B1 не параллельны (они пересекаются в точке P). Получаем, что этот четырехугольник – трапеция. Очевидно, что все остальные боковые грани тоже будут трапециями.

Как и в случае с пирамидой, усеченная пирамида тоже может быть правильной.

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.

image008

Основаниями усеченной пирамиды являются правильные многоугольники, а боковые грани – равнобедренные трапеции.

Высоты этих трапеций называются апофемами.

image009

Объединение боковых граней называется боковой поверхностью усеченной пирамиды, а объединение всех граней называется полной поверхностью усеченной пирамиды. Тогда площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней.

image010

А площадью полной поверхности пирамиды называется сумма площадей всех ее граней.

image011

Теперь давайте сформулируем и докажем теорему о площади боковой поверхности правильной усеченной пирамиды.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров основания на апофему.

image012

Запишем формулу для нахождения площади боковой поверхности усеченной пирамиды.

image013

Поскольку усеченная пирамида правильная, значит, ее гранями будут равнобедренные трапеции.

image014

Площадь равнобедренной трапеции равна произведению полусуммы оснований на высоту. Высота боковой грани есть ничто иное как апофема усеченной пирамиды.

image015

Подставим все в исходную формулу, вынесем половину апофемы за скобки, а в скобках сгруппируем стороны по основаниям. Тогда получим, что площадь боковой поверхности будет равна произведению полусуммы периметров оснований усеченной пирамиды на апофему.

image016

Что и требовалось доказать.

Решим несколько задач.

Задача. Стороны оснований правильной усеченной четырехугольной пирамиды image017равны image018и image019. Высота пирамиды равна image020. Найти площадь боковой поверхности.

image021image022

image023

image024

Решим еще одну задачу.

Задача. Пирамида пересечена плоскостью, параллельной основанию. Доказать что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

image025

image026

Что и требовалось доказать.

Решим еще одну задачу.

Задача. Правильная треугольная пирамида image027с высотой image028и стороной основания равной image029рассечена плоскостью image030, проходящей через середину image031высоты image032параллельно основанию image033. Найти площадь боковой поверхности полученной усеченной пирамиды.

Подведем итоги урока. Сегодня на уроке мы познакомились с такими понятиями как усеченная пирамида, правильная усеченная пирамида. Рассмотрели свойства правильной усеченной пирамиды. Решили несколько задач.

Источник

Усеченные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности усеченной пирамиды

div1

Усеченные пирамиды

body10

body10w400

body10w300

Расстояние между плоскостями Расстояние между плоскостями оснований усеченной пирамиды называют высотой усеченной пирамиды.

Множество всех боковых граней усеченной пирамиды составляет боковую поверхность усеченной пирамиды.

Полная поверхность усеченной пирамиды состоит из оснований усеченной пирамиды и ее боковой поверхности.

body11

body11w300

Теорема Эйлера. Для любой усеченной пирамиды справедливо равенство:

то теорема Эйлера доказана.

Правильные усеченные пирамиды

vpir16

vpir16w400

vpir16w300

Определение 2. Высоту боковой грани правильной усеченной пирамиды называют апофемой правильной усеченной пирамиды (рис 4).

vpir17

vpir17w300

Свойства правильной усеченной пирамиды:

Все боковые ребра правильной усеченной пирамиды равны.

Все боковые грани правильной усеченной пирамиды являются равными равнобедренными трапециями.

У любой правильной усеченной пирамиды все апофемы равны.

Все боковые ребра правильной усеченной пирамиды образуют с плоскостью нижнего основания усеченной пирамиды равные углы.

Все боковые ребра правильной усеченной пирамиды образуют с плоскостью верхнего основания усеченной пирамиды равные углы.

Все боковые грани правильной усеченной пирамиды образуют с плоскостью нижнего основания усеченной пирамиды равные двугранные углы.

Все боковые грани правильной усеченной пирамиды образуют с плоскостью верхнего основания усеченной пирамиды равные двугранные углы.

Отрезок, соединяющий центры верхнего и нижнего оснований правильной усеченной пирамиды, перпендикулярен плоскостям оснований правильной усеченной пирамиды. Длина этого отрезка равна высоте правильной усеченной пирамиды.

Источник

Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

fcfbc4c2bd9c2f2b81f6d929160ccfd8

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

f00446949f4009e14a26f15fe4b19302

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

5db97f35cb9a4712ec014c36d135fea1

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

018bd766c023da0fb831ebd9d2acee49

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

bd6b2601f7fb0678e388471a16359df2

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

Источник

Оцените статью
Добавить комментарий

Adblock
detector