- Геометрические фигуры. Усеченная пирамида.
- Свойства усеченной пирамиды.
- Формулы для усеченной пирамиды.
- Сечение пирамиды плоскостью, параллельной основанию.
- Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида
- Что такое пирамида в общем случае?
- Правильная четырехугольная пирамида
- Четыре основных линейных параметра
- Площадь и объем фигуры
- Свойства правильной усеченной четырехугольной пирамиды
- Усеченная пирамида
- Урок 28. Геометрия 10 класс ФГОС
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Усеченная пирамида»
- Усеченные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности усеченной пирамиды
- Усеченные пирамиды
- Правильные усеченные пирамиды
- Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида
- Геометрические представления о фигуре
- Правильная пирамида
- Сторона основания, высота, боковое ребро и апотема
- Объем фигуры
- Площадь поверхности
- Свойства правильной усеченной пирамиды треугольной
Геометрические фигуры. Усеченная пирамида.
Усеченной пирамидой является многогранник, заключенный меж основанием пирамиды и секущей плоскостью, которая параллельна ее основанию.
Или другими словами: усеченная пирамида — это такой многогранник, который образован пирамидой и ее сечением, параллельным основанию.
Сечение, которое параллельно основанию пирамиды делит пирамиду на 2 части. Часть пирамиды меж ее основанием и сечением — это усеченная пирамида.
Это сечение для усеченной пирамиды оказывается 1-ним из оснований этой пирамиды.
Расстояние меж основаниями усеченной пирамиды является высотой усеченной пирамиды.
Усеченная пирамида будет правильной, когда пирамида, из которой она была получена, тоже была правильной.
Высота трапеции боковой грани правильной усеченной пирамиды является апофемой правильной усеченной пирамиды.
Свойства усеченной пирамиды.
1. Каждая боковая грань правильной усеченной пирамиды является равнобокими трапециями одной величины.
2. Основания усеченной пирамиды являются подобными многоугольниками.
3. Боковые ребра правильной усеченной пирамиды имеют равную величину и один наклонен по отношению к основанию пирамиды.
4. Боковые грани усеченной пирамиды являются трапециями.
5. Двугранные углы при боковых ребрах правильной усеченной пирамиды имеют равную величину.
Формулы для усеченной пирамиды.
Для произвольной пирамиды:
Объем усеченной пирамиды равен 1/3 произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.
h — высота усеченной пирамиды.
Площадь боковой поверхности равняется сумме площадей боковых граней усеченной пирамиды.
Для правильной усеченной пирамиды:
Правильная усеченная пирамида — многогранник, который образован правильной пирамидой и ее сечением, которое параллельно основанию.
Площадь боковой поверхности правильной усеченной пирамиды равна ½ произведения суммы периметров ее оснований и апофемы.
φ — двугранный угол у основания пирамиды.
CH является высотой усеченной пирамиды, P1 и P2 — периметрами оснований, S1 и S2 — площадями оснований, Sбок — площадью боковой поверхности, Sполн — площадью полной поверхности:
Сечение пирамиды плоскостью, параллельной основанию.
Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) разделяет высоту и боковые ребра пирамиды на пропорциональные отрезки.
Сечение пирамиды плоскостью, которое параллельно ее основанию (перпендикулярной высоте) – это многоугольник, который подобен основанию пирамиды, при этом коэффициент подобия этих многоугольников соответствует отношению их расстояний от вершины пирамиды.
Площади сечений, которые параллельны основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.
Формулы и свойства правильной четырехугольной пирамиды. Усеченная пирамида
Что такое пирамида в общем случае?
В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.
Вам будет интересно: Литовские статуты: даты и история изданий, регламент, хронология принятия статутов
Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:
Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.
Правильная четырехугольная пирамида
Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.
Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).
Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.
Египетские пирамиды в Гизе являются правильными четырехугольными.
Далее приведем формулы, позволяющие определить все характеристики этой фигуры.
Четыре основных линейных параметра
Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.
Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:
Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):
Очевидно, что боковое ребро b всегда больше апофемы ab.
Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.
Площадь и объем фигуры
Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:
Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.
Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:
S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)
Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.
Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:
То есть V равен третьей части произведения высоты фигуры на площадь ее основания.
Свойства правильной усеченной четырехугольной пирамиды
Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.
Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.
Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:
V = 1/3 × h × (So1 + So2 + √(So1 × So2))
Усеченная пирамида
Урок 28. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Усеченная пирамида»
На прошлых уроках мы работали с пирамидами. Давайте вспомним, какой многогранник называется пирамидой, что такое правильная пирамида, вспомним свойства правильной пирамиды.
Пирамида называется правильной, если ее основание – правильный многоугольник.
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.
Пусть нам дана пирамида PA1A2…An. Проведем секущую плоскость β, параллельную плоскости основания пирамиды и пусть эта плоскость пересекает боковые ребра в точках B1,B2,…, Bn.
Плоскость β разбивает пирамиду на две фигуры: пирамиду PB1B2…Bn и многогранник. Многогранник, гранями которого являются n-угольники A1A2…An и B1B2…Bn, расположенные в параллельных плоскостях и n четырехугольников A1A2B2B1, A2A3B3B2,…, AnA1B1Bn называется усеченной пирамидой.
Вокруг нас много примеров усеченных пирамид. Вытяжка над кухонной плитой имеет форму усеченной пирамиды.клавиши клавиатуры и другие предметы.
Отрезки A1B1,…, AnBn называются боковыми рёбрами усеченной пирамиды.
Усеченную пирамиду обозначают так A1A2…AnB1B2…Bn. Возьмем на верхнем основании произвольную точку C и из этой точки опустим перпендикуляр на нижнее основание. Этот перпендикуляр называется высотой усеченной пирамиды.
Теперь давайте докажем, что боковые грани усеченной пирамиды – это трапеции.
Для доказательства рассмотрим грань A1A2B2B1. Понятно, что для других боковых граней доказательство будет проводится аналогично.
Поскольку секущая плоскость проводилась параллельно плоскости основания, то можно записать, что A1A2 параллельно B1B2. Очевидно, что две другие стороны четырехугольника A1A2B2B1 не параллельны (они пересекаются в точке P). Получаем, что этот четырехугольник – трапеция. Очевидно, что все остальные боковые грани тоже будут трапециями.
Как и в случае с пирамидой, усеченная пирамида тоже может быть правильной.
Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.
Основаниями усеченной пирамиды являются правильные многоугольники, а боковые грани – равнобедренные трапеции.
Высоты этих трапеций называются апофемами.
Объединение боковых граней называется боковой поверхностью усеченной пирамиды, а объединение всех граней называется полной поверхностью усеченной пирамиды. Тогда площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней.
А площадью полной поверхности пирамиды называется сумма площадей всех ее граней.
Теперь давайте сформулируем и докажем теорему о площади боковой поверхности правильной усеченной пирамиды.
Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров основания на апофему.
Запишем формулу для нахождения площади боковой поверхности усеченной пирамиды.
Поскольку усеченная пирамида правильная, значит, ее гранями будут равнобедренные трапеции.
Площадь равнобедренной трапеции равна произведению полусуммы оснований на высоту. Высота боковой грани есть ничто иное как апофема усеченной пирамиды.
Подставим все в исходную формулу, вынесем половину апофемы за скобки, а в скобках сгруппируем стороны по основаниям. Тогда получим, что площадь боковой поверхности будет равна произведению полусуммы периметров оснований усеченной пирамиды на апофему.
Что и требовалось доказать.
Решим несколько задач.
Задача. Стороны оснований правильной усеченной четырехугольной пирамиды равны
и
. Высота пирамиды равна
. Найти площадь боковой поверхности.
Решим еще одну задачу.
Задача. Пирамида пересечена плоскостью, параллельной основанию. Доказать что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.
Что и требовалось доказать.
Решим еще одну задачу.
Задача. Правильная треугольная пирамида с высотой
и стороной основания равной
рассечена плоскостью
, проходящей через середину
высоты
параллельно основанию
. Найти площадь боковой поверхности полученной усеченной пирамиды.
Подведем итоги урока. Сегодня на уроке мы познакомились с такими понятиями как усеченная пирамида, правильная усеченная пирамида. Рассмотрели свойства правильной усеченной пирамиды. Решили несколько задач.
Усеченные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности усеченной пирамиды
Усеченные пирамиды
Расстояние между плоскостями Расстояние между плоскостями оснований усеченной пирамиды называют высотой усеченной пирамиды.
Множество всех боковых граней усеченной пирамиды составляет боковую поверхность усеченной пирамиды.
Полная поверхность усеченной пирамиды состоит из оснований усеченной пирамиды и ее боковой поверхности.
Теорема Эйлера. Для любой усеченной пирамиды справедливо равенство:
то теорема Эйлера доказана.
Правильные усеченные пирамиды
Определение 2. Высоту боковой грани правильной усеченной пирамиды называют апофемой правильной усеченной пирамиды (рис 4).
Свойства правильной усеченной пирамиды:
Все боковые ребра правильной усеченной пирамиды равны.
Все боковые грани правильной усеченной пирамиды являются равными равнобедренными трапециями.
У любой правильной усеченной пирамиды все апофемы равны.
Все боковые ребра правильной усеченной пирамиды образуют с плоскостью нижнего основания усеченной пирамиды равные углы.
Все боковые ребра правильной усеченной пирамиды образуют с плоскостью верхнего основания усеченной пирамиды равные углы.
Все боковые грани правильной усеченной пирамиды образуют с плоскостью нижнего основания усеченной пирамиды равные двугранные углы.
Все боковые грани правильной усеченной пирамиды образуют с плоскостью верхнего основания усеченной пирамиды равные двугранные углы.
Отрезок, соединяющий центры верхнего и нижнего оснований правильной усеченной пирамиды, перпендикулярен плоскостям оснований правильной усеченной пирамиды. Длина этого отрезка равна высоте правильной усеченной пирамиды.
Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида
Геометрические представления о фигуре
Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.
Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.
Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.
Правильная пирамида
Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.
Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.
Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.
Сторона основания, высота, боковое ребро и апотема
Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.
Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.
Для высоты h получаем выражение:
Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.
Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:
Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.
Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.
Объем фигуры
Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:
Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:
Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:
То есть он определяется длиной стороны a однозначно.
Площадь поверхности
Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.
Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:
Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.
Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:
Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.
Полная площадь поверхности фигуры равна:
S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a
Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:
Свойства правильной усеченной пирамиды треугольной
Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.
В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.
Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.
Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:
S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)
Объем фигуры рассчитывается следующим образом:
V = √3/12*h*(a12 + a22 + a1*a2)
Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.