Обрезанный круг как называется

girl 1848947 1920 Советы на день

Нахождение площади сегмента круга

В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.

Определение сегмента круга

Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.

Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.

ploshad segmenta kruga exc 1

Формулы нахождения площади кругового сегмента

Через радиус и центральный угол в градусах

ploshad segmenta kruga exc 2

α° – угол в градусах.

Через радиус и угол сектора в радианах

ploshad segmenta kruga exc 3

αрад – угол в радианах.

Примеры задачи

Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.

Решение
Воспользуемся первой формулой, подставив в нее известные значения:

ploshad segmenta kruga exc 5

Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах:

Источник

Обрезанный круг как называется

Круг — это часть плоскости, ограниченная окружностью. Центр данной окружности называется центром круга, а расстояние от центра до любой точки окружности — радиусом круга:

krug

O — центр круга, OA — радиус круга.

Площадь круга

Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга:

где S — площадь круга, а r — радиус круга.

Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

D = 2r, значит r = D .
2

Следовательно, формула нахождения площади круга через диаметр будет выглядеть так:

S = π( D ) 2 = π D 2 = π D 2 .
2 2 2 4

Сектор круга. Площадь сектора

Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:

krug2

Чтобы найти площадь сектора, дуга которого содержит , надо площадь круга разделить на 360 и полученный результат умножить на n.

krug3

Формула площади сектора:

S = πr 2 · n = πr 2 n ,
360 360

где S — площадь сектора. Выражение

можно представить в виде произведения

πr 2 n = n · πr · r ,
360 180 2

где nπr — это длина дуги сектора.
180

Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:

где S — это площадь сектора, s — длина дуги данного сектора, r — радиус круга.

Сегмент. Площадь сегмента

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой. Любая хорда делит круг на два сегмента:

krug4

Площадь сегмента равна половине радиуса, умноженной на разность между дугой сегмента и половиной хорды двойной дуги.

krug5

Площадь сегмента AMB будет вычисляться по формуле:

где S — это площадь сегмента, r — радиус круга, s — длина дуги AB, а BC — длина половины хорды двойной дуги.

Источник

Математика

Закажи карту Tinkoff Junior сейчас и получи 200 ₽ на счет

С этой картой можно накопить на мечту, жми ⇒

План урока:

Здравствуйте, ребята. Меня зовут Игрек, я самый умный фиксик.

На уроке вы узнаете новые математические понятия.

Приготовьте тетрадь, ручку, простой карандаш, линейку, циркуль.

Понятие доли

Вы когда-нибудь заглядывали в тетради к старшеклассникам? Смотрите, какой у меня пример.

Видите сложение, вычитание, умножение? Знаки этих действий известны: плюс, минус, точка. Деление же в примере обозначено горизонтальной чертой.На рисунке она выделена красным цветом. Я расскажу, когда в математике используют черту.

Мы умеем делить несколько предметов, но часто деление нужно, чтобы раздробить одно число на равные части — доли от целой величины.

Один разделить на два — это одна вторая. Что же это такое?

Каждый из вас получал половину или одну долю.

На лесной полянке собралось девять друзей, апельсин делили на всех. Рассмотрите рисунок. Как называется каждая часть фрукта?

Совершенно верно, это долька. Апельсин поделили на 9 одинаковых долек.Каждая 1 долька апельсина — это одна из девяти равных долей целого фрукта.

Вы теперь поняли, ребята, что в жизни человеку приходится не только пересчитывать предметы, но и делить (дробить) целое на части, вот так появилось в математике понятие доли и дроби.

Знак доли (дроби) обозначают дробной горизонтальной или наклонной чертой. Например, так — 1/9 (одна девятая). Запись придумали арабы в 16 веке.

Доли называют по количеству частей раздробленного одного предмета:

Знание о долях помогает решить задачи.

Запомните правило по математике нахождения доли.Чтобы найти долю от числа надо число разделить на эту долю. В дроби число, на которое делят, записано под чертой и называется знаменателем. То число, которое надо разделить, пишут над чертой. Это числитель.

Задание 1

Найдите пятую долю от числа 25. Это значит, что надо выполнить действие деления.

Привычный пример 25 : 5 можно записать вот таким образом:

Или так — 25/5. 25 – это числитель, а 5 — знаменатель.

Ответ: одна пятая доля от числа 25 равна пяти.

Задание 2

Чему равна 1/4 доля от полоски длинной 16 см?

Полоску согните пополам, ещё раз пополам. Разверните. На сколько долей линией сгиба разделили полоску? Правильно, на 4.

Закрасьте одну такую долю.

Какую долю вы закрасили? (одну четвёртую)

Ответ: длина одной четвертой доли полоски составляет 4 см.

Задание 3

Решите задачи на понятие доли. Рассмотрите рисунки. Какая доля каждой фигуры закрашена серым цветом?

Рассуждаем так.

На рисунке 1 отрезок разделили на 7 частей.Значит, закрашена одна седьмая (1/7) доля фигуры.

Проверьте:

На следующих рисунках заштрихована 1/16 доля квадрата, 1/6 доля шестиугольника, 1/5 доля круга.

Чтобы разобрать понятие массовой доли, представьте себе килограмм яблок (1000 г), который мама купила своим трем детям.

Из этого килограмма самому младшему ребенку досталась половина всех яблок (несправедливо, конечно!). Старшему — лишь 200 г, а среднему — 300 г.

Значит, массовая доля яблок у младшего ребенка составит половину, или одну вторую (1/2) массовую долю.

У старшего ребенка будет:

1000 : 200 = 5 — одна пятая (1/5) массовая доля

Далее рассуждаем так:

Младшему ребенку дали половину яблок.

Яблоки разделили между детьми по 500г, 200г и 300г. Вы знаете, что 500 — это 5 сотен, 200 — 2 сотни, 300 — 3 сотни.

На сколько сотен разделили все яблоки?

5 сотен + 2 сотни + 3 сотни = 10 сотен.

Сколько граммов будет в одной десятой доле?

1000 : 10 = 100 (г) в одной десятой доле

У среднего ребенка 300 г. Во сколько раз больше, чем 100 г?

В три раза. Значит, у среднего ребенка будет не одна, а три десятых массовых долей 3/10.

Ребята, вы молодцы. Верное решение.

Окружность. Круг

А сейчас познакомимся с самой совершенной фигурой, как считал древнегреческий математик Пифагор. Ответьте на вопрос: «Какие известные вам геометрические плоские фигуры не содержат углов?»

Правильно, круги, а еще окружности.

Совершенная форма этой геометрической фигуры привлекает внимание художников, дизайнеров, архитекторов. Они используют её в своих изделиях для украшения.

Ограда на набережной реки Невы в Санкт-Петербурге

Назовите предметы из обычной жизни, которые по форме похожи на эти фигуры.Правильно, круглые очки. Вы очень внимательные ребята.

Посмотрите на рисунок. Назовите окружности и круги.

Проверьте себя:

Но как начертить такие ровные окружности? Приглашаю на помощь лучшего друга.

Знакомьтесь, ребята, к нам пришел новый житель страны Геометрии – чертежный инструмент. Он поможет разобраться, как изобразить круг.

Привет, я циркуль. Мое имя произошло от старинного латинского слова «циркулюс», что означает круг.

Давайте потренируемся чертить циркулем:

Линию, нарисованную грифелем циркуля, называют окружностью.

Точки на окружности А и В расположены от центра на равном расстоянии. Их соединяет отрезки ОА и ОВ – называются радиусами окружности.

Продлите по линейке отрезок ВО поперек всей окружности. Вы начертили диаметр окружности— отрезок ВС. Он прошел через центр и соединил 2 точки на окружности В и С.

Как вы думаете, сколько диаметров можно провести в одной окружности?

Совершенно верно — сколько угодно, как говорят математики — бесконечное число.

Посмотрите на колесо от велосипеда.

Втулка — это центр, а спицы напоминают радиусы и диаметры.

Если величину диаметра умножить на 3, мы получим примерную длину окружности. Точную формулу вычисления вы узнаете в 7 классе на уроках геометрии, а также, что такое вписанная и описанная окружности.

А сейчас возьмите альбомный лист, начертите окружность и по этой границе аккуратно вырежьте фигуру. Её можно закрасить любым цветом, например, синим, как на рисунке. Это круг — часть плоскости, ограниченная окружностью.

У круга есть площадь. Окружность вырезать невозможно, потому что это просто замкнутая кривая линия вокруг круга — его граница.

Решите задачу

На клетчатой бумаге нарисован круг, площадь которого равна 40. Найдите площадь закрашенной части фигуры.

Рассуждайте так: на рисунке закрашена четвертая доля фигуры. Значит надо выполнить деление.

Ответ: площадь равна 10

Диаметр круга

Нарисуйте две окружности с радиусом 3 см. Фигуру справа закрасьте желтым карандашом. Получится круг.В обеих фигурах проведите диаметры и радиусы.

Измерьте диаметр окружности и диаметр круга. Сколько у вас получилось?

Правильно, 6 см. Радиус круга равен 3 см. Он два раза помещается в диаметре, значит это половина или одна вторая доля от целого.

Радиус круга равен половине или 1/2 диаметра.

Путем несложных математических вычислений можно понять, что диаметр в 2 раза больше радиуса.

Решите задачу

Третьеклассник вырезал круг радиусом 50 мм. Сколько сантиметров в его диаметре?

Решение:

Ответ: диаметр круга равен 10 см.

Вы хорошо справились.

Нам пора провести зарядку для глаз, чтобы сберечь зрение.

Физкультминутка

Ребята, я тоже люблю укреплять здоровье. Вчера пошел на хоккейную площадку. Но вместо игры попросили начертить круги больших диаметров, чтобы обновить разметку поля.

Задача 1

Как начертить без циркуля круг для вбрасывания шайбы диаметром 300 мм?

Решение:

Радиус круга равен половине диаметра.

Возьмите гвоздь, карандаш, нитку длиной 15 см. Начертите окружность как показано на рисунке.

Задача 2

Из центра поля нужно нарисовать круг синей краской диаметром 9 метров.

Рассуждаем: диаметр круга 9 м, значит радиус — половина.

900 : 2 = 450 (см) = 4 м 50 см.

На центральную точку встает друг Гвоздик, крепко держит конец веревки, а к другому концу нужно закрепить кисть с краской. Фиксик Игрек на коньках едет вокруг Гвоздика, рисует линию окружности. Главное — туго натягивать веревку, чтобы радиус в 450 см не уменьшался. Вот такая разметка получается в центре хоккейной площадки:

После работы пора поиграть в хоккей.

Похожим способом можно начертить 7 окружностей больших диаметров на картоне для новогодней елки. Посмотрите на рисунок, какая красавица получается.

Поделку делайте вместе с родителями. Для больших кругов возьмите карандаш, гвоздик и нитку. Маленькие — нарисуйте циркулем. Понадобится начертить всего 11 окружностей для десяти обручей елки.

Задача 3

Диаметр первого нижнего круга елки равен 80 см, а каждого следующего уменьшается на 8 см. Найдите, чему равны диаметры следующих кругов.

Какой диаметр маленького круга наверху у елки?

Для решения задачи вспомните таблицу умножения на 8.

Обратный отсчет диаметров круга по таблице 80, 72, 64, 56, 48, 40, 32, 24, 16, 8.

Диаметр маленького круга 8 см.

Вы отлично выполнили вычисления.

Теперь отгадайте новую загадку. Что идет, не двигаясь с места? (Правильно, это время.)

Единицы времени

Каждый человек хочет понять время. Оно нам нужно, потому что мы живем по режиму, а магазины, библиотеки, вокзалы — по расписанию. Определенное количество дел намечаем сделать в единицу времени.

Давайте познакомимся с единицами измерения времени.

Земля обращается вокруг Солнца за 365 суток. Это год. Один раз в 4 года он увеличивается на сутки, и называется високосным.

С глубокой древности круг считается символом годовых сезонных циклов: зимы, весны, лета и осени. Рассмотрите рисунок годового круга: он поделен на 4 доли — четыре времени года.

Единица величины каждого времени года делится на 3 месяца.

В году 3 ∙ 4 = 12 месяцев. Месяц — единица времени, за которую Луна обходит планету Земля вокруг.

В каждом месяце 30 или 31, а в феврале 28 или 29 суток.

Исторически основной единицей для времени были сутки (часто говорят «день»). За одни сутки Земля поворачивается вокруг своей оси.

В результате деления суток на меньшие временные интервалы возникли часы, минуты и секунды. Сутки – единица времени, равная 24 часам. Один час — это 60 минут. Минута состоит из 60 секунд.

Выполните задания

1. Выразите время в указанных единицах измерения

2 мин. 14 сек. = … сек.

187 сек. = … мин. … сек.

Решение:

1 час = 60 мин. Значит, в восьми часах будет в 8 раз больше. Нужно выполнить умножение.

В 8 часах — 480 минут да еще 25 мин. Действие сложения.

Ответ: 8 ч 25 мин. = 505 мин.

Дальше решайте аналогично:

2 мин. 14 сек. = 60 ∙ 2 + 14 = 134 сек.

95 мин. = 1 ч 35 мин.

187 сек. = 3 ч. 7 сек.

2. Выберите единицы времени, которые расположены в порядке возрастания

а) час, минута, секунда

б) секунда, минута, час

в) минута, час, секунда

Проверьте себя.

Правильный ответ — б.

3. Автомобиль до Москвы едет 2 суток, а обратно 48 часов. Почему такая разница?

Проверьте себя.

2 сут. = 48 ч. Разницы нет.

Наш урок подходит к концу. Я надеюсь, что вы будете ценить свое время, не будете терять его зря.

Я с вами прощаюсь, а вы проверьте свои знания.

В материалах урока использованы кадры из м/с «Фиксики», 2010

Источник

Обрезанный круг как называется

Окружность – это фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки.

Основные понятия:

Центр окружности – это точка, равноудаленная от точек окружности.

Радиус – это расстояние от точек окружности до ее центра (равен половине диаметра, рис.1).

Диаметр – это хорда, проходящая через центр окружности (рис.1).

Хорда – это отрезок, соединяющий две точки окружности (рис.1).

Касательная – это прямая, имеющая только одну общую точку с окружностью. Проходит через точку окружности перпендикулярно диаметру, проведенному в эту точку (рис.1).

Секущая – это прямая, проходящая через две различные точки окружности (рис.1).

Единичная окружность – это окружность, радиус которой равен единице.

Дуга окружности – это часть окружности, разделенная двумя несовпадающими точками окружности.

1 радиан – это угол, образуемый дугой окружности, равной длине радиуса (рис.4).
1 радиан = 180˚ : π ≈ 57,3˚

Центральный угол – это угол с вершиной в центре окружности. Равен градусной мере дуги, на которую опирается (рис.2).

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Равен половине градусной меры дуги, на которую опирается (рис.3).

Okruzhnosti1Две окружности, имеющие общий центр, называются концентрическими.

Две окружности, пересекающиеся под прямым углом, называются ортогональными.

Длина окружности и площадь круга:

Обозначения:
Длина окружности – C
Длина диаметра – d
Длина радиуса – r

Значение π:
Отношение длины окружности к длине ее диаметра обозначается греческой буквой π (пи).

Формула длины окружности:

Формулы площади круга:

Площадь кругового сектора и кругового сегмента.

Круговой сектор – это часть круга, лежащая внутри соответствующего центрального угла.
Формула площади кругового сектора:

πR 2
S = ——— α
360

где π – постоянная величина, равная 3,1416; R – радиус круга; α – градусная мера соответствующего центрального угла.

Круговой сегмент – это общая часть круга и полуплоскости.
Формула площади кругового сегмента:

πR 2
S = ——— α ± SΔ
360

Знак «минус» надо брать, когда α 180˚.

Уравнение окружности в декартовых координатах x, y c центром в точке (a;b):

Окружность, описанная около треугольника (рис.4).

Если от середины каждой из сторон треугольника провести перпендикуляры, то точка их пересечения будет центром окружности, описанной около этого треугольника.

Окружность, вписанная в треугольник (рис.5).

Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис этого треугольника.

Углы, вписанные в окружность (рис.3).

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность.

Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Основные понятия:

Угол делит плоскость на две части. Каждая из этих частей называется плоским углом.

Плоские углы с общими сторонами называются дополнительными.

Плоский угол с вершиной в центре окружности называется центральным углом (рис.2)

Okruzhnosti3
Пропорциональность отрезков хорд и секущих окружности.

Если хорды AB и CD окружности пересекаются в точке S, то

Если из точки P к окружности проведены две секущие, пересекающие окружность соответственно в точках A, B и C, D, то

Частные случаи и формулы:

1) Из точки C, находящейся вне окружности, проведем касательную к окружности и обозначим точку их соприкосновения буквой D.

Затем из той же точки C проведем секущую и точки пересечения секущей и окружности обозначим буквами А и B (рис.8).

CD 2 = AC · BC

Okruzhnosti4

2) Проведем в окружности диаметр AB. Затем из точки C, находящейся на окружности, проведем перпендикуляр к этому диаметру и обозначим получившийся отрезок CD (рис.9).

CD 2 = AD · BD.

Источник

Окружность и круг

Содержание

В древние времена люди смотрели на небо и видели там круглое Солнце, круглую Луну. Они придавали кругу мистическое значение и считали его очень красивым. Изображение круга можно увидеть на наскальных рисунках.

Окружность

Судя по древним изображениям, люди изобрели циркуль, с помощью которого можно было чертить ровные круги, уже три тысячи лет назад. Циркуль даже упоминается в мифах Древней Греции.

Если установить ножку циркуля с иглой в какую-либо точку, а ножку с грифелем или карандашом повернуть вокруг той точки, у нас получится замкнутая линия. Она называется окружность.

Окружность состоит из множества точек, расположенных очень близко друг к другу. И какую бы точку на окружности мы не взяли, расстояние от этой точки до центральной точки (той, в которую мы втыкали иглу циркуля) будет одинаковым.

Окружность — замкнутая кривая, которая состоит из всех точек на плоскости, одинаково удалённых от заданной точки, лежащей в той же плоскости, что и кривая; эта точка называется центром окружности.

Радиус

Поставим точку О, затем начертим вокруг неё окружность. На окружности поставим точку А. Это можно сделать в любом месте, где захотите. Теперь соединим точки, у нас получится отрезок ОА. Теперь поставим на окружности вторую точку, В, и тоже соединим её с центром. Сравним отрезки ОА и ОВ. Они равны.

Сколько бы мы ни ставили точек на окружности и сколько бы ни соединяли их с центром, у нас будут получаться равные отрезки.

Отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности, называется радиус.

Все радиусы окружности равны между собой.

Латинское слово radius переводится как «спица колеса». Действительно, ведь все спицы у колеса соединены с центром и все равны.

Диаметр

Теперь проведём линию от точки С через центр окружности до её противоположного края. Отрезок СD состоит из двух радиусов: СО и ОD. По размеру он вдвое длиннее радиуса. Такой отрезок называется диаметр.

Диаметр – это отрезок, соединяющий две точки на окружности и проходящий через центр окружности.

Помните, мы говорили, что плоскость бесконечна? Но, прочертив на ней окружность, мы делим плоскость на две части. Одна часть – за пределами окружности – так и остаётся бесконечной. А вторая, маленькая, оказывается ограничена пределами окружности и лежит внутри неё.

Часть плоскости вместе с самой окружностью называют кругом.

Это как если бы мы взяли большой лист бумаги, нарисовали на нём кружок и вырезали его ножницами.

Круг тоже состоит из множества точек, и все они лежат на нашей маленькой плоскости. Расстояние от этих точек до центра круга не превышает радиус.

Части круга и окружности

Рассмотрим рисунок 8.

Диаметр разделяет круг на два равных полукруга, а окружность – на две полуокружности.

Часть окружности называется дугой

Теперь мы можем сформулировать определение полукруга и полуокружности:

Полукруг – часть круга, ограниченная диаметром и дугой, лежащей между концами диаметра

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром

Таким образом, полуокружность – это тоже дуга, но не всякая дуга – полуокружность.

Точки А и В на рисунке 10 разделяют окружность на две части, две дуги. Сами точки называют концами дуг.

А вот с таким делением круга, как на рисунке 11, вы наверняка хорошо знакомы. Такой кусочек называется «сектор». Можете попробовать дать определение сектора?

Показать определение сектора

Сектор — часть круга, ограниченная дугой и двумя радиусами

Давайте проверим, хорошо ли вы запомнили части круга.

А вот ещё один хорошо знакомый вам пример окружности – циферблат. Эта окружность разделена на 60 равных делений, и когда минутная стрелка минует очередное деление, это означает, что прошла минута. А больших делений 12, каждое соответствует часу.

Источник

Оцените статью
Добавить комментарий

Adblock
detector