Основатели математики как науки

woman 6670772 1920 Советы на день
Содержание
  1. 16 известных и величайших математиков
  2. 16. Сриниваса Рамануджан
  3. 15. Жозеф-Луи Лагранж
  4. 14. Эндрю Уайлс
  5. 13. Карл Густав Джейкоб Якоби
  6. 12. Алан Тьюринг
  7. 11. Г.Ф. Бернхард Риман
  8. 10. Анри Пуанкаре
  9. 9. Дэвид Гильберт
  10. 8. Фибоначчи
  11. 7. Семья Бернулли
  12. 6. Пифагор
  13. 5. Карл Фридрих Гаусс
  14. 4. Иссак Ньютон
  15. 3. Леонард Эйлер
  16. 2. Архимед
  17. 1. Евклид
  18. Великие математики и их открытия. Люди, подарившие нам язык Вселенной
  19. Отцы-основатели
  20. Эвклид
  21. Пифагор
  22. Архимед
  23. Математики Возрождения
  24. Леонардо Пизанский
  25. Исаак Ньютон (1642 — 1727 гг.)
  26. Готфрид Лейбниц (1646 — 1716 гг.)
  27. Леонард Эйлер (1707 — 1783 гг.)
  28. Рене Декарт (1596 — 1650 гг.)
  29. Жозеф Луи Лагранж (1736 — 1813 гг.)
  30. Пьер-Симон Лаплас (1749 — 1827 гг.)
  31. Иоганн Гаусс (1777 — 1855 гг.)
  32. Российские математики
  33. Николай Лобачевский (1792 — 1856 гг.)
  34. Софья Ковалевская (1850 — 1891 гг.)
  35. Андрей Колмогоров (1903 — 1987 гг.)
  36. Кто создал математику
  37. Кто создал математику
  38. Зарождение математики
  39. Вавилон
  40. Египет
  41. Происхождение слова математика
  42. Возникновение элементарной математики
  43. Переменные величины в математике
  44. Появление современной математики

16 известных и величайших математиков

Кто из величайших и самых известных математиков когда-либо жил? Что ж, его ответ нелегок, поскольку математика была известна человечеству с доисторических времен, задолго до рождения Христа.

Роль математики в нашей жизни огромна. Математика позволила передавать электричество на тысячи километров, помогла изучить концепцию ДНК, породила компьютеры, и в нашем стремлении лучше понять вселенную.

Без математики ученые не могут разрабатывать лучшие лекарства, а инженеры не могут исследовать новые технологии. У этого списка нет конца.

Как и большинство вещей, математика, которую мы знаем сегодня, возникла не просто случайно. Математикам требуются десятилетия, чтобы сформулировать новую революционную теорему и уравнение. Так кто же эти математики? Давайте разберемся.

16. Сриниваса Рамануджан

7474

Известен: гипотеза Рамануджана – Петерссона; Основная теорема Рамануджана

Сриниваса Рамануджан был, пожалуй, самым замечательным математиком в современной Индии. Хотя Рамануджан не имел формальной подготовки, его продвинутые математические знания в очень молодом возрасте приводили многих в замешательство.

К 16 годам он смог изучать числа Бернулли, которые он сам разработал, и рассчитал постоянную Эйлера-Маскерони. Перед смертью в молодом возрасте 32 лет Рамануджан успешно собрал почти 4000 различных математических тождеств.

Он приобрел международную известность после того, как выдающийся британский математик Дж. Харди узнал его работу и сравнил его с такими, как Эйлер и Якоби.

15. Жозеф-Луи Лагранж

455463

Известен: Лагранжевой механики; Небесная механика; Теория чисел

Джозеф Лагранж был одним из самых заметных учеников великого Леонарда Эйлера. Лагранж начал свою математическую карьеру с вариационного исчисления (в 1754 году), которое привело к формулировке уравнения Эйлера – Лагранжа.

Лагранж переформулировал классическую механику, чтобы представить механику Лагранжа несколько лет спустя. Его знаменитая работа по аналитической механике (Mécanique analytique) помогла другим исследователям развить область математической физики.

14. Эндрю Уайлс

455463 1

Награды: Приз Волка (1995/6); Премия Абеля (2016)

Сэр Эндрю Джон Уайлс — британский математик, наиболее известный тем, что доказал последнюю теорему Ферма, некогда считавшуюся «самой сложной математической проблемой».

В 1975 году под руководством Джона Х. Коутса Эндрю Уайлс начал работать над теорией Ивасавы, которую он продолжил с американским математиком Барри Мазуром.

Однако его крупнейший прорыв произошел в начале 1990-х, когда он смог доказать большую часть теоремы модульности (ранее гипотеза Танияма-Шимура). Теорема модульности, по сути, связана с последней теоремой Ферма и была достаточной для ее доказательства.

Мистер Уайлз в настоящее время работает профессором-исследователем в Оксфордском университете.

13. Карл Густав Джейкоб Якоби

455463 2

Известен: эллиптических функций Якоби; Преобразование Якоби

Кроме того, он внес фундаментальный вклад в области механической динамики и теории чисел.

12. Алан Тьюринг

455463 3

Известен: Криптоанализ загадки, Доказательства Тьюринга, премия Смита (1936)

Во время Второй мировой войны немецкая разведывательная сеть считалась почти непробиваемой. Многие союзные страны боялись, что, если они не смогут перехватить важные передачи нацистского верховного командования, они могут в конечном итоге проиграть войну.

После окончания войны Тьюринг присоединился к Национальной физической лаборатории (Великобритания), где он разработал автоматический вычислительный движок, один из самых ранних компьютеров с хранимой программой.

11. Г.Ф. Бернхард Риман

455463 4

Известен: интеграл Римана; Ряд Фурье

Георг Бернхард Риман родился в небольшой деревне недалеко от Данненберга, Германия. Под руководством Карла Фридриха Гаусса Риман изучал дифференциальную геометрию и выдвигал свою теорию дополнительных или более высоких измерений. Его работа теперь известна как риманова геометрия.

На Римана оказал сильное влияние Иоганн Густав Дирихле, который также оказал влияние на его математическую карьеру. Только используя принцип Дирихле, он смог сформулировать знаменитую теорему Римана о отображении.

Некоторые из его математических уравнений были позже использованы Эйнштейном в его общей теории относительности.

10. Анри Пуанкаре

455463 5

Анри Пуанкаре Генри Пуанкаре вместе с Мари Кюри на Сольвеевской конференции 1911 года

Известен: проблема с тремя телами; Теория хаоса; Теорема Пуанкаре – Хопфа

По словам Эрика Белла, известного шотландского математика, Анри Пуанкаре был, вероятно, одним из последних универсалистов, поскольку в то время он процветал почти во всех известных областях математики.

В течение своей жизни Пуанкаре внес многочисленные теории в области математической физики, прикладной математики и астрономии. Он сыграл важную роль в разработке теории специальной теории относительности.

Более того, его исключительные работы по преобразованию Лоренца и проблеме трех тел проложили путь математикам, а также астрофизикам к открытиям о нашей планете и космосе. Его теоретические работы даже вдохновили известных художников, таких как Пикассо и Брак, создать художественное движение (кубизм) в 20-м веке.

9. Дэвид Гильберт

455463 6

Известен: теории доказательств; Проблемы Гильберта

Дэвид Гильберт был, пожалуй, самым известным математиком времени. Он сыграл важную роль в разработке фундаментальных теорий в области коммутативной алгебры, вариационного исчисления и математической физики.

Проблемы Гильберта (набор из двадцати трех математических задач, которые он опубликовал в 1900 году) повлияли на новаторские исследования в различных областях математики. Некоторые из этих проблем до сих пор не решены.

В последние дни Дэвид Гильберт посвятил себя физике. Именно в это время он соревновался с Альбертом Эйнштейном в общей теории относительности.

8. Фибоначчи

455463 7

Известен по: числам Фибоначчи

Фибоначчи, также известный как Леонардо из Пизы, был одним из самых опытных математиков высокого средневековья.

Возможно, его самым важным вкладом в этот предмет является книга Либера Абачи, в которой он популяризировал индо-арабскую систему счисления (0,1,2,3,4. ) и последовательность Фибоначчи в Европе.

Последовательность Фибоначчи используется в компьютерных алгоритмах и базах данных.

7. Семья Бернулли

The Bernoulli Brothers

В мире математики семья Бернулли занимает особое место. Родом из Антверпена (Бельгия), Джейкоб и его брат Иоганн Бернулли были первыми математиками в этой семье.

И Джейкоб, и Иоганн работали вместе над бесконечно малым исчислением, и им приписывают теоремы и обоснования, такие как числа Бернулли и кривая Брахистохрона.

Даниэль Бернулли, сын Джейкоба, был одним из самых выдающихся членов семьи Бернулли. Его наиболее известная работа, принцип Бернулли, математически объясняет работу карбюратора и крыла самолета. Он также внес существенный вклад в области вероятности и статистики.

6. Пифагор

455463 8

Пифагор (пишет книгу), изображенный на фреске Рафаэля «Афинская школа»

Известен: теорема Пифагора; Теория Пропорций

Пифагор Самосский родился около 570 г. до н.э. Как и большинство древних греков, о его молодости известно немногое. Как философ, его работы оказали влияние на Платона и Аристотеля, а также на Иоганна Кеплера и Исаака Ньютона.

Пифагор, возможно, также был ответственен за открытие Теории Пропорций.

5. Карл Фридрих Гаусс

455463 9

Награды: премия Лаланде (1809), медаль Копли (1838)

Карл Фридрих Гаусс был, пожалуй, самым влиятельным математиком со времен древних греков. Его вклад в различные области математики и физики практически не имеет аналогов. Гаусс начал проявлять математические способности в возрасте семи лет, когда он мог решать арифметические прогрессии намного быстрее, чем кто-либо в своем классе.

Некоторые из его популярных работ включают Закон Гаусса и Теорема Egregium, в которых сделан вывод, что Земля не может быть отображена на карте без искажений. Он был первым, кто предположил возможность неевклидовой геометрии, хотя его работы никогда не публиковались.

4. Иссак Ньютон

455463 10

Известен: законы движения Ньютона; Исчисление; Ньютоновская механика

Сэр Иссак Ньютон является одним из основателей классической механики, а также исчисления бесконечно малых. Его взгляды на гравитацию оставались общепринятыми до теории относительности Эйнштейна.

Самый замечательный вклад Ньютона в математику — исчисление (тогда называемое бесконечно малыми), которое он разработал независимо от своего современника Готфрида Вильгельма Лейбница.

Это был Ньютон, который первым объяснил причину приливных возмущений на Земле и помог проверить закономерности движения планет Кеплера. Его работы по оптике дали нам первый в мире преломляющий телескоп.

3. Леонард Эйлер

455463 11

Известен: догадки Эйлера; Уравнения Эйлера; Числа Эйлера

Сегодня математики высоко ценят Эйлера и считают его самым важным математиком 18-го века.

Эйлер внес значительный вклад почти во все основные области математики, включая алгебру, тригонометрию и геометрию. В физике его работы по гидродинамике и рядам Фурье не имеют себе равных.

2. Архимед

455463 12

Известен: принцип Архимеда; гидростатика

Архимед родился примерно в 287 г. до н.э. в Сиракузах, Сицилия. Он хорошо разбирался в математике, физике и астрономии того времени. Он был эрудитом. Однако большинство его литературных произведений не сохранилось.

Архимед был одним из пионеров геометрии, который вывел формулы для площади круга, объема и площади поверхности сферы. Его метод определения значения числа пи оставался бесспорным и единственным известным способом вычисления окружности круга на протяжении десятилетий.

Филдса, самая высокая честь в области математики, несет портрет (справа облицовочный) Архимед вместе с цитатой приписываемой ему.

1. Евклид

455463 13

Известен: евклидовой геометрии; Евклидов алгоритм

Евклид Александрийский был греческим математиком, которого многие считают основателем геометрии. Euclid’s Elements, сборник из 13 книг, считается одной из самых старых и влиятельных книг по математике.

Хотя геометрия (которая теперь известна как евклидова геометрия) является фокусом в Элементах Евклида, она также имеет всеобъемлющее введение в теорию элементарных чисел. Его работы по оптике также получили широкое признание.

Источник

Великие математики и их открытия. Люди, подарившие нам язык Вселенной

Кто-то уже давно назвал математику основой всех наук. С этим трудно поспорить, ведь без математических знаний невозможно описать ни движение планет, ни полёт бабочки. Более того, без этих знаний трудно даже подсчитать, на что потратить свои карманные деньги, или сколько дней осталось до очередного отпуска! Если хоть чуточку задуматься, величие и всеохватность математических знаний поражают. Кто же они — великие математики и их открытия, кто подарил человечеству эту науку?

Отцы-основатели

За многие тысячелетия огромное количество учёных занимались развитием математических знаний. Кто-то из них снискал себе мировую славу, кто-то оказался не столь известен широкой публике, но тем не менее, сделал в математике что-то весьма важное. Список известных математиков состоит из многих десятков, если не сотен, фамилий. Мы упомянем лишь некоторых: тех, кто волею судьбы или благодаря своей гениальности оказался «на исторической сцене». И начнём с нескольких имён тех людей, кто жил и творил в глубокой древности, но заложил, таким образом, основы этой науки.

Эвклид

Этот учёный из Древней Греции жил примерно в III веке до нашей эры. Примерно, потому что мы мало знаем о его жизни, разве лишь то, что проживал он в Александрии. Да и то, некоторые источники, особенно арабские, утверждают, что на самом деле Эвклид был «прописан» в Дамаске.

fullsize

Эвклида называют отцом геометрии. Он доказал много теорем и гипотез, написал несколько научных трактатов. Из них два труда — «Элементы» и «Начала», заложили базовый фундамент всей последующей европейской математики. В «Началах» содержится известная каждому школьнику теорема Пифагора. По этому учебнику преподавали геометрию в школах Европы около 2 тысяч лет!

Пифагор

Если Эвклид — отец геометрии, то Пифагора величают отцом математики. Он также жил в Греции, за полторы сотни лет до Эвклида. Создал собственную математическую школу, впервые в истории человечества сделал математику прикладной наукой, вводя её элементы в повседневный обиход. Кстати, далеко не все историки согласны с тем, что именно он доказал свою знаменитую тригонометрическую теорему.

fullsize

Архимед

Древнегреческий учёный из Сиракуз занимался многими науками, но, по словам Плутарха, «был одержим математикой». Много работал в области геометрии, сам же считал своим главным достижением выведение формулы для исчисления площади шара и его объёма. Идеи Архимеда заложили основу интегрального исчисления.

fullsize

Математики Возрождения

После заката эллинической культуры математика Европы пережила несколько веков стагнации, пока новая плеяда умов не вдохнула в эту науку новые идеи. Назвать выдающихся математиков того времени намного сложнее, потому что их оказалось значительно больше, чем в Древней Греции.

Леонардо Пизанский

Здесь Леонардо познакомился с индийской и арабской математическими школами, которые в эти века значительно превосходили уровень европейской математики.

fullsize

По возвращению в Европу написал ряд научных трудов, в том числе главный, по математике — «Книга абака». Леонардо ввёл в европейскую математику привычные нам арабские цифры, а также не менее привычную десятичную систему исчисления. Как истинный сын торговца, юноша внёс в математику понятие отрицательных чисел, называя их «долгом». Разработал основы бухгалтерского учёта.

Исаак Ньютон (1642 — 1727 гг.)

Выдающийся англичанин, классик физики, математики и астрономии. Среди нескольких его основных трудов есть один, касающийся математики, — «Математические начала натуральной философии». Это «Библия» классической механики, в которой приведены формулы для описания движения всех тел во Вселенной. Кроме того, Ньютон заложил основы дифференциального и интегрального исчислений.

fullsize

Готфрид Лейбниц (1646 — 1716 гг.)

Этот немецкий учёный жил и творил в одно время с Ньютоном, и, независимо от последнего, создал основы математического анализа, опирающиеся на понятия бесконечно малых величин. Лейбниц представлял себе матанализ алгебраически, а не кинематически, как это делал Ньютон.

fullsize

Леонард Эйлер (1707 — 1783 гг.)

В специальной литературе нередко можно встретить утверждение, что этот швейцарец является самым выдающимся математиком всех времён. Между прочим, он много лет прожил в России, в Петербурге, и даже многие свои работы написал на русском языке, который выучил в совершенстве всего за год!

Трудно найти отрасль математики, в которой Эйлер не написал бы хоть одну важную работу. Он впервые создал «математический оркестр», увязав множество доселе разрозненных дисциплин в единую систему математики. Язык современной математики нельзя представить без таких понятий, как «углы Эйлера» или «формула Эйлера». Некоторые математические вопросы до сегодняшнего дня преподают студентам «по Эйлеру».

fullsize

Рене Декарт (1596 — 1650 гг.)

Когда мы говорили, что Ньютон и Лейбниц разработали основы математического анализа, справедливо было бы вспомнить, что их изыскания базировались не на пустом месте. Начальные идеи были известны ещё до работ этих учёных, а разработал их почти легендарный француз, Рене Декарт.

Современные математики считают его зачинателем аналитической геометрии. Он впервые ввёл понятия функции и переменной величины. С одним из достижений Декарта сталкивался практически каждый человек. Это система координат, известные всем шкалы «икс» и «игрек». Помимо этого, именно Рене ввёл в математику понятия гиперболы и параболы, овала и листа.

fullsize

Жозеф Луи Лагранж (1736 — 1813 гг.)

В XVIII веке, наряду с Эйлером, этот француз считался лучшим европейским математиком. Был особенно силён в области математического синтеза. Разработал и доказал несколько важнейших теорем, в том числе «формулу конечных приращений».

fullsize

Пьер-Симон Лаплас (1749 — 1827 гг.)

Много работал как астроном, но в математике известен как один из тех, кто разрабатывал теорию вероятностей. Специалистам известны уравнения его имени и преобразование Лапласа. Ввёл важное понятие математического ожидания.

fullsize

Иоганн Гаусс (1777 — 1855 гг.)

Мы говорили уже об отце математики — Пифагоре. А этого немца нередко называют королём математики. Гаусс написал ряд важнейших работ во многих отраслях этой науки, которые до сих пор остаются базовыми, классическими. Много работал в математическом анализе, в неэвклидовой геометрии, открыл так называемые «гауссовые числа», разработал модель комплексных чисел.

fullsize

Российские математики

В заключение хотелось бы подчеркнуть, что свой вклад, причём значительный, внесли в европейскую математическую науку и российские учёные. Вспомним хотя бы о некоторых их них.

Николай Лобачевский (1792 — 1856 гг.)

Создал особый раздел в геометрии, до сих пор называемый неэвклидовой геометрией, или попросту, геометрией Лобачевского. Его труды, не признанные современниками, опередили своё время, изменили традиционное представление о пространстве и заложили фундамент для работ Эйнштейна. Также уточнил понятие непрерывной функции, разработал несколько остроумных теорем о тригонометрических рядах.

fullsize

Софья Ковалевская (1850 — 1891 гг.)

Первая женщина в России, ставшая профессором математики. Много работала в области небесной механики и математической физики, описывала вращение твёрдого тела, решила одну из так называемых задач Коши.

fullsize

Андрей Колмогоров (1903 — 1987 гг.)

Один из тех учёных, кто разработал теорию вероятностей в её современном виде. В своих трудах добился фундаментальных результатов в функциональном анализе, теориях множеств, мере и приближение функций.

fullsize

Великие математики и их открытия изменили знания людей о нашем мире, Вселенной, частью которой мы являемся. Благодаря их трудам мы получили возможность не просто созерцать окружающий мир, но просчитывать его, понимать механизмы его функционирования. Математика стала тем ключиком, которым люди научились открывать двери природы, пусть далеко не все. Но, зная математические законы, мы в определённой мере начали «читать» книгу Вселенной. Язык этой книги — математику, подарили человечеству, в том числе, и те люди, о которых мы только что прочитали.

Источник

Кто создал математику

ktosozdalmatematiku 5

Кто создал математику

По мнению известного математика советских времен А. Н. Колмогорова, история развития математики разделяется на четыре основных этапа. Каждый из них отличался накапливанием нового материала. Постепенно знания все больше расширялись, благодаря математическим исследованиям и систематическому изучению. ktosozdalmatematiku 3

Если заглянуть в далекое прошлое, то счет уже тогда относился к математической деятельности. Это было обычной необходимостью для занятия торговлей или ведением скотоводства. Для того чтобы упростить задачу, использовали верхние и нижние конечности. Подтверждение этому можно найти на рисунках на скалах, где можно увидеть числа, при этом они имели вид пальцев, расположенных в ряд. Такие факты убеждают в том, что еще в древнее время математика уже была, а люди умели считать.

Зарождение математики

Когда цивилизация только начинала развиваться, возникла необходимость подсчета предметов, которые употреблялись всеми, это привело к тому, что возникли простейшие понятия арифметики. Математика в древности развивалась очень медленно, но постепенно стали вырабатываться приемы, благодаря которым удавалось выполнить простейшие арифметические действия. Это привело к возникновению систем счисления.
Первыми существенными открытиями были представления о числе, позже появились четыре основных действия, которые в современном мире знакомы практически каждому, речь идет о делении, умножении, сложении и вычитании. В геометрии же сначала появились такие понятия как окружность и прямая.
Поскольку требовалось измерить количество зерна, обозначить длину дороги и прочее, стали появляться названия и обозначения простых дробных чисел, а соответственно, стали разрабатываться приемы, которыми можно было воспользоваться чтобы сделать вычислительные действия, в которых присутствовали дроби.
Постепенно стали накапливаться определенные знания, которые и привели к образованию первой древней науки – арифметики. Но необходимо было также измерять площади и объемы, люди начали интересоваться астрономией, это дало начало появлению геометрии. Если возникает вопрос, в каком веке возникла математика, то по мнению многих ученых начало приходится на VI-V вв. до н. э. свидетельством этого стало наличие египетских папирусов и клинописных табличек вавилонян, на которых имеются решения задач по арифметике, алгебре и геометрии.

Вавилон

1849 – 1850 стали годами, когда была обнаружена библиотека в руинах старого городка Ниневия. Как стало ясно, еще за 2000 лет до н. э. уже составлялись таблицы умножения, и имелось понятие о квадратах целого числа.. Так как зародилась математика? Было установлено что у народов Месопотамии была разработана система действий, схожая с современными формулами. Однако нет найденных рассуждений, которые привели древних людей к такому алгоритму, поэтому считается, что математика была рецептурная.
Чтобы обозначить числа, вавилоняне использовали два значка, один из которых был горизонтальным клином, а другой вертикальным. Если речь шла о цифрах от 1 до 9, то применяли определенное количество клиньев, расположенных в вертикальном положении. Число 10 обозначалось горизонтальным, а 60 опять вертикальным. Такая система не являлась совершенной, поскольку каждая из комбинаций обозначала разные числа.
Некоторые отпечатки нумерации Вавилона сохранились и по сей день, к примеру 1 час = 60 минутам, минута равна 60 секундам. Жителями велось постоянное наблюдение за звездами, они вели календарь, старались вычислить моменты, когда Луна обращалась, следили за иными планетами, умели точно предсказывать, когда будет затмение звездных светил. Позже этими знаниями они поделились с греками, они также воспользовались и шестидесятеричной нумерацией.

Египет

Невозможно точно ответить на вопрос, в каком году появилась математика, но, исходя из сохранившихся древнейших математических текстов Древнего Египта, которые относятся к периоду начала второго тысячелетия до нашей эры, уже тогда люди решали отдельные задачи. В документах можно найти и решения, которые часто сопровождались проверочной работой. Математической теории, где бы имелась система из доказанных теорем не существовала, это можно утверждать с точностью, поскольку к примеру, употребление точных и приближенных решений абсолютно не отличались друг от друга. Однако, было много накопленных математических решений, так как необходимо было использовать строительную технику, требовалось вести точный календарь, разбираться со сложностями в разрешении споров относительно земли и прочее. У египтян можно обнаружить своеобразную очень сложную систему действий с дробными числами, которая требовала использование вспомогательных таблиц.
Геометрия у народов Египта также присутствовала. Математика в древности кратко сводилась к основам, которые позволяли вычислять площади и объемы. Они позволяли точно вычислять площади таких фигур как треугольник и трапеция (см. египетский треугольник), узнавать объем параллелепипедов и пирамид, имеющих основание в виде квадрата. Одно из лучших достижений древних египтян это открытие того, как вычислить объем пирамиды, имеющей основание квадратного типа.

Происхождение слова математика

Учения, полученные путем размышления, к примеру, о числах, фигурах, музыке и астрономии, требовалось как-то обозначить. Как возникло слово математика, доклад об этом можно прочесть на страницах интернета. Считается, что само название возникло у древних греков, это произошло в V веке до н. э.
При этом последователями Пифагора считалось, что таких знаний достойны лишь посвященные, запрещалось открывать свои достижения иным лицам. Математики, которые относились к группе следующих за Гиппасом имели иные соображения, они полагали, что наука должна быть доступна каждому, кто имеет способности к продуктивному мышлению.

Возникновение элементарной математики

После того как накопилось множество определенного материала, составными которой являлись индивидуальные методы вычислений арифметического характера и способы, по ним велось исчисление площадей, возникла математика в виде самостоятельной науки, поскольку люди начали понимать, насколько это необходимо. Если отвечать на вопрос, кто изобрел математику, то, несомненно, арифметика и алгебра зародилась еще в Вавилонии.
Но сама математика и развитие науки, что заключалось в последовательном ее изучении, образовалась в Древней Греции. Благодаря древним грекам, возникла система, на которой впоследствии была построена математическая теория. Арифметика переросла в целую теорию, посвященную числам. Зародилось учение, которое давало понятие о том, что является величиной и измерением.
Для пифагорейцев число являлось основой всего, что существовало, по их мнению, оно являлось началом мира. По их предположению основной задачей познания науки является нахождение во всем закономерности, которая существует в числах. Так кто создал математику? Одним из основателей математизации всего существующего был великий философ Платон. Он считал, что сама Вселенная создает математические формы как строительные кирпичики.

Еще одним родоначальником математики, который изучал явления природы был ученый Архимед, благодаря ему были открыты многие достижения в физической и механической области. Труды этого гения являются ярким образцом того, что в древности уже развивались математические знания. Если обратить внимание на математику более позднего периода, то уже заметны практические вычисления, использование задач и решений. Это можно найти в работах Птолемея и Герона.
Постепенно основное развитие науки стало перемещаться в такие страны как Китай, Индия, Средняя Азия. История возникновения математики здесь была в V-XV вв. Именно в эти годы удалось достигнуть больших продвижений в точных науках. У индийцев появилась новая до этого никем не использовавшаяся система, благодаря можно было делать исчисления, появилось такое понятие как отрицательное и иррациональное число, были созданы методы алгоритмов, а также измерительные приборы.
Благодаря математикам с Востока появилась методика, позволяющая извлекать корни, и решать ряд уравнений. Получила развитие тригонометрия и нашла свое практическое применение. Именно в средние века в данных странах практически в полном объеме образовалась десятичная система счисления, которую используют в современном мире, также основалась алгебра и тригонометрия. Но, по некоторым историческим причинам, где-то в средней части XV века математическое развитие оказалось приостановленым в вышеуказанных странах и прекратилось на многие столетия.
Математика в историческом развитии в странах Западной и Центральной Европы выпала, когда наступила эпоха Возрождения, а именно в XV веке. Благодаря итальянцам Тарталья и Феррари были решены уравнения, имеющие неизвестные в кубе и четверти. В ту же эпоху начинаются операции с присутствием мнимых чисел, составляются логарифмические таблицы, изобретается формула бинома Ньютона и прочее.
Математика откуда появилась в России? Она получила развитие из европейских стран и имело тот же уровень в XI-XIII веках, но после монгольского нашествия изучение математики надолго было приостановлено. Самым старым из проводимых исследований математического типа можно назвать то, что принадлежит монаху Кирику, его относят к 1130 году. В нем имелись арифметико-хронологические вычисления пасхалий, которые сводились к решению уравнений, имеющих целые числа.
Концом периода, когда элементарная математика переросла в нечто иное, считается начало XVII века, при этом математические интересы перенеслись в область науки, что изучает переменные величины.

Переменные величины в математике

XVII век стал началом нового периода в математическом развитии, стали вводиться новые понятия и движения. Зависимость величин одной от другой стала объектом изучения. Прежде всего проводится работа над понятием функция. Необходимо выделить таких ученых как Кеплер, Коперник, Галилео Галилей и Торричелли.
Многие задаются вопросом, откуда произошла математика, огромную роль в данный период сыграла книга Декарта, под названием «Геометрия». Благодаря тому, что стали изучаться понятия о величинах переменного типа, а также об их зависимости друг от друга, появилась идея о понятии бесконечности, речь идет о пределе, производной, дифференциале и интеграле.
Вторая часть XVII века стала периодом, когда Ньютон и Лейбниц создали анализ исчислений, они имели интегральный и дифференциальный вид. Это позволило связать изменения величин в конечном состоянии и с тем, как они себя вели в отдельно взятых их значениях.
Запись основных законов механики и физики стали вести в форме уравнений, относящихся к дифференциальному типу. Поиск же функций, которые относятся к неизвестным, относящиеся к условиям минимальности или максимальности некоторых величин стал предметом различного исчисления. Поэтому появляются не только уравнения, имеющие неизвестные числа, но также и те, где таковыми становятся функции.

ktosozdalmatematiku 4Геометрия

Геометрия тоже значительно расширяет свое изучение, появляется интерес к движению и преобразованию. Когда появилась геометрия аналитического характера, полностью переменилось отношение к самой науке, нашлось необычное решение, благодаря которому удалось перевести вопросы, геометрического направления в алгебраический язык, решать их при помощи методов, основанных на аналитике и алгебре. Если обратить внимание на иную сторону, и алгебра претерпела перемены, к примеру, зависимости функционального характера стали изображать графически.

Появление современной математики

История математики, кратко, прошла множество этапов развития. Большую интенсивность изменений данная наука претерпела в XIX и XX веках. Задачи начали больше анализироваться и применяться к таким наукам как естествознание и астрология. Начинается огромный количественный рост, однако, в конце XVIII, а также в начале XIX века появляются некоторые совершенно новые черты.
Поскольку накопилось большое количество фактического материала, то возникла необходимость его проанализировать логически и объединить, для этого нужны были новые пересмотрения. Математика и естествознание объединяются, сложность форм становится все боле очевидной. Выдвигаемые теории охватывали не только важные вопросы по естествознанию и технике, но решали внутренние, касающиеся непосредственно математики. В эту пору появилась теория функций комплексного переменного.
История появления математики не могла не затронуть механических и физических аспектов, поэтому появились исчисления векторного и тензорного направления. Наиболее известным достижением данного периода можно назвать функциональный анализ. Этап позволило решать задачи по математической физике более усовершенствованными методами, этим стали пользоваться во многих отраслях современной физики.
Теория множеств, изобретенная Кантором, сыграла огромную роль в основании анализа математического аппарата.
Как возникла математика? История развития основывалась на внутренних потребностях науки, на том, что появлялись новые методы в естествознании, поскольку происходило изучение количественных отношений и пространственных форм. Поэтому приходилось расширять области изучения, включать отношения множественных чисел, векторы, функциональные пространства, формы пространств чисел измерений и иное.
Основной новизной, она началась в XIX веке в развитии науки, можно назвать то, что у математиков возник осознанный и очень огромный интерес к количественным отношениям и пространственным формам. Ранее, когда вводились понятия отрицательного и комплексного числа, а также при создании правил, позволяющих с ними работать, необходимо было затратить длительное время. Сейчас требовалось выработать нюансы, позволяющие поэтапно и сознательно создавать новые алгебраические и геометрические системы.
Поскольку математика начала стремительно расширяться, то пришлось вернуться к аспектам, обосновавшим ее. Таким образом, были критически пересмотрены исходные вариации, выстраивались цепочки доказательств, с критикой рассматривались приемы логических цепочек, которые использовались при данных доказательствах. Определенного стандарта требований по отношению к строгости логического содержания удалось добиться лишь в конце XIX. При этом строгость распространялась на практические методики ученых, которые работали над некоторыми математическими теориями.
Начало XIX века стало происхождением значительного расширения в приложениях анализа математического направления. Ранее в физике основные отделы были механика и оптика, теперь развитие получает такая наука как электродинамика, также широко изучается термодинамика и основы теории магнетизма. Развивается и механика непосредственных сред. История возникновения математики, кратко, продолжает свое развитие. В технике появляются огромные запросы, связанные с математикой. Активно ведется разработка теории уравнений дифференциального типа, которая включает в себя частные производные, решаются уравнения по математической физике.
Теория дифференциальных уравнений получила огромное развитие, начало ей было положено французским великим математиком Пуанкаре и русским великим математиком Ляпуновым, именно это подтолкнуло иных ученых исследовать топологию многообразий.

samye krasivye formuly 3 1Огромное значительное дополнение к методам уравнений дифференциального типа стало изучение природных явлений и решение задач технического направления, что послужило началом создания теории вероятностей. Она начинает быстро развиваться, так как появляется теория процессов случайного происхождения, а также развивается аппарат математической статистики.
В элементарной геометрии и проективной ее части математиков заинтересовывают основы, связанные с логическими и аксиоматическими цепочками. Главными же отделами, которыми заинтересовываются научные умы, становятся алгебраическая геометрия, дифференциальная ее часть и риманова геометрия.
Поскольку проводилось множество практических работ, то необходимо было найти решение на задачу, которое бы обозначалось в числовой форме. Однако, даже после полного разбора в теории, это зачастую оказывалось непосильным. В начале XX века стали использоваться ЭВМ, поэтому потребовалось ввести самостоятельную ветку математики, которая стала называться вычислительной.
Современные особенности математики и ее направления были сложены в начале XX века. Основная часть их сохранилась, хотя наука и продолжает свое развитие. Благодаря исследованиям, связанных с общими проблемами управления, с которым в свою очередь связаны области математики и процессы вычислительной техники, появилась основа, позволяющая автоматизировать новые сферы деятельности человека.

Из данного небольшого обзора можно сделать некоторые выводы о том, как появилась математика. Краткое содержание материала можно изложить следующим образом: развитие происходило из-за постоянного расширения знаний о науке, благодаря исследованиям, созданию новых понятий, возрастающему интересу к предмету.
История возникновения математики кратко рассказывает о том, что до 17 века математику считали наукой, которая изучает числа, величины и геометрические фигуры. В основном ее применяли в торговле, астрономии, при землемерных работах и в архитектуре. 18 век стал началом бурного развития техники и естествознания, поэтому возникли идеи, связанные с измерением и движением, выдвигались новые теории. И лишь в 19-20 веках математика начинает активно развиваться и вырастает в вычислительную математику.

ktosozdalmatematiku 6История возникновения математики

Источник

Оцените статью
Добавить комментарий

Adblock
detector